
Secure Communication: Eric Simmerman
Certificate Authorization in Your J2EE PKI
Integrate self-certified certificates with J2EE systems via JSSE 8

Feature: Building Transformational Bill Dettelback
Web Services... with J2EE and an XML database 16

EJB Spec 2.0: Programming Restrictions Leander van Rooijen
in EJB Development
Building scalable enterprise applications 24

Showdown: Are You Ready to Rumble? Michael Deasy
.NET vs J2EE Smackdown: the raging debate in the developer community 36

Java Class Files: Hello World! in 70 Bytes Norman Richards
Take the challenge – create the smallest Java class 44

Data Security & Mobility: Java Card 2.2 Joseph Smith

Specifications Overview
Java Card engineering with RMI specifications 66

Feature: Optimizing Java Performance Carl Barratt
in Heritage Designs The advantages and disadvantages 70

JDJ Labs: BEA WebLogic Workshop Joseph A. Mitchko
Create and deploy Web services 76

Ja
v

a
C

O
M

SYS-CON
MEDIA

TM

WEB SERVICES WORLD TOUR DON’T MISS IT! P.83

COMING TO A
CITY NEAR YOU

SEE PAGE 83 FOR DETAILS

2002
BOSTON - - - - - - - - JULY 10
SAN FRANCISCO - - AUGUST 6
SEATTLE - - - - - - - AUGUST 27
AUSTIN - - - - - - - - SEPTEMBER 10
LOS ANGELES - - - - SEPTEMBER 19
SAN JOSE - - - - - - OCTOBER 3

AND MANY MORE!

From the Editor

Alan Williamson pg. 5

J2EE Editorial

Ajit Sagar pg. 7

J2SE Editorial

Jason Bell pg. 40

J2ME Editorial

Jason R. Briggs pg. 62

Industry Commentary

Ken Greenwood pg. 64

Cubist Threads

Blair Wyman pg. 94

Java COM

2 JULY 2002 3JULY 2002

Java COM

Zero G
www.zerog.com

Sonic Software
www.sonicsoftware.com/jdj

5JULY 2002

Java COMJava COM

4 JULY 2002

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

F R O M T H E E D I T O RD IF

Java in a Flash!

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

When I wrote my last editorial I
was on a plane to Toronto. What
I neglected to tell you was

where I was off to after Toronto. It was to
Redmond, Washington, as the guest of
Microsoft, where they showed me the virtues
of their .NET framework. It was a very inter-
esting visit and I learned a lot. I’m in the
throes of writing up my report on the whole
shebang and once I have my facts straight,
I’ll publish them in JDJ. So keep an eye out
next month for that.

By the time you’ve read this, the World
Cup will be over and another country will
be heralded as the greatest football nation
for the next four years, until they thrash it
out again in 2006 in Germany. Why do I
draw attention to this you ask? Well, it’s a
great test of the technology we’re all build-
ing. It’s at times like these that you realize
just how powerful and far reaching the
Internet has become. No matter how much
capacity sites prepare themselves for,
sometimes it’s just not enough. Take the
BBC Web site. On the first day of the World
Cup they experienced some 8 million hits,
three times more than normal traffic. Some
users complained of being locked out, but
on the whole it coped.

What I find wonderful about this tale is
that a lot of the BBC site is run with Java
technology – a great success story about the
power of Java. A shot across the bow of the
anti-Java brigade I say! While this sort of traf-
fic peak is something the majority of devel-
opers will never experience, it is nice to know
that should such a flood come our way, we’ve
chosen a technology that’s beautifully scala-
ble.

• • •
This month we have a new J2SE editor

taking over the reins from Keith Brown. I bid

farewell to Keith and thank him for his
insight over the last few months. He’ll still be
popping up from time to time when his
schedule permits, so you haven’t heard the
last of him. The J2SE mantel will be taken up
by Jason Bell, a JDJ writer of old, who will
give his slant on the whole Java space. That’s
two Jasons we have on the editorial staff…it’s
an invasion!

One of the best parts of this job is talking
to you. Over time I have had some wonderful
conversations with people from all walks of
life – people now engaged in the world of
Java, with origins from the strangest of
places. For example, I had a delightful
exchange with a Bill Reister who took me
into the world of flying military jets. Another
exchange was with a Razvan Surdulescu who
came to us with a great idea for a story that
we all instantly jumped at. Razvan has writ-
ten an emulator for the ZX Spectrum in Java.
His proposal got my vote for many reasons. I
owe my current life choice to that little Z80-
based machine. When I was just 11-years old
it whetted my appetite for the world of com-
puters.

How many of you remember program-
ming in those days? It’s funny to look at it
now, especially when we look at the power
Java has laid before us. For example, for a
long time I couldn’t figure out how programs
could ever work without the notion of line
numbers! Remember choosing 10, 20,
30…giving yourself enough spacing in case
you had to add in additional statements.

For those of you who are aware of the
Spectrum, check out Razvan’s article this
month; I think you’ll enjoy the trip down
memory lane. For those of you who aren’t
familiar with that machine, read it anyway;
it’s a great piece on emulation.

Until next month.

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
EXECUTIVE EDITOR: NANCY VALENTINE

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: JASON BELL

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
JEAN CASSIDY

ASSISTANT EDITOR: JENNIFER STILLEY
ONLINE EDITOR: LIN GOETZ

TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, CARL BARRATT, JASON BELL, JASON BRIGGS, MICHAEL DEASY,

BILL DETTELBACK, KEN GREENWOOD, JOE MITCHKO, BILLY PALMIERI,
NORMAN RICHARDS, AJIT SAGAR, ERIC SIMMERMAN, JOSEPH SMITH,

RAZVAN SURDULESCU, LEANDER VAN ROOIJEN,
ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Java COM

J2SE
H

om
e

J2E
E

J2M
E

Java COM

BEA Systems
www.bea.com/download

7JULY 2002

ajit@sys-con.com

J 2 E E E D I T O R I A LO R

AJIT SAGAR J2EE EDITOR

Team Spirit

6 JULY 2002

Java COM

J 2 E E I N D E XX

7

8

36

24

16

Team Spirit
Here’s a short pop quiz: Have
you ever built an application in
J2EE and taken it through the
entire product life cycle?
by Ajit Sagar

Certificate Authorization
in Your J2EE PKI
When a client recently
requested secure communi-
cation among multiple plat-
form boxes distributed
across three continents, I
decided to leverage the
100% Java-based security
available via Java Secure
Socket Extension.
by Eric Simmerman

Building Transformational
Web Services
Web services is intended to
create the synergy of many
applications working together
– the whole is greater than
the sum of its parts. These
types of Web services must
be resistant to change and
quickly adaptable to new
types of users who want to
use it on their own terms and
with their own data formats.
by Bill Dettelback

Programming Restrictions
in EJB Development
This article states some of the
programming restrictions as
defined in the EJB 2.0 specifi-
cations (almost the same as
the 1.1 spec) and tries to
explain the reason for the
restriction. Where possible it
also includes an alternative
approach to reaching your goal
without violating the restriction.
by Leander van Rooijen

Are You Ready to
Rumble?
There is a raging debate in
the developer community:
Microsoft’s new platform
.NET versus the Sun stan-
dard J2EE. On April 25,
2002, Microsoft and Sun
came together on one stage
(together again, for the first
time anywhere) – and the
battle was joined.
by Michael Deasy

Java COM

J2SE
H

om
e

J2E
E

J2M
E

Here’s a short pop quiz: Have you
ever built an application in J2EE
and taken it through the entire

product life cycle? Or, for that matter, any
distributed computing application? If the
answer is “Yes,” then answer this one: Have
you handled all the facets of the applica-
tion on your own – as a one-man team? If
you answered “Yes” to both questions, my
response is: I don’t believe you. You can do
one or the other, but not both, if we’re talk-
ing about a real-world application, that is.

J2EE offers a platform for developing
applications whose components or sub-
systems can be distributed across the dif-
ferent tiers of the computing network.
The obvious advantage is the decoupling
of the programming logic that leads to
reusable and scalable solutions. The other
main advantage is that development proj-
ects can structure their teams so that each
member is assigned to develop the sub-
system that utilizes his or her particular
skillset. The operative word here is team.
J2EE projects are team-oriented projects.

Of course, J2EE development can mean
different things to different folks. There’s a
plethora of configuration options for appli-
cation components and a variety of APIs
that can be applied to their development.
Sun’s Java Blueprints outline the different
ways to skin the n-tier. It all depends on the
business requirements of your application,
the technologies available at your company
(or the ones that your corporation is willing
to invest in), and the external systems you
will have to integrate with.

It’s true that a J2EE application can be
built by a one-man team. For instance, if
you’re building the Pet Store application,
the airline reservation application, or the
typical bank account two-phase-commit
example, you can do it yourself. Or if your
application consists of a few business
flows built on simple business logic and
textbook data schemas, one or two devel-
opers with similar skillsets will suffice.

However, the colloquial interpreta-
tion of a J2EE application is one that uses
the J2EE object model – EJB. Typically,
EJBs apply to large-scale business appli-
cations, and an EJB-based project
requires a mix of skillsets. In fact, the
J2EE application server vendors have
cornered the market on the J2EE frame-
works and component containers. The
Java IDEs offer the code development
environment. The data and business
modeling tools enable design and analy-
sis. The vendors offer a mix of options for
developing J2EE applications, all based
on the J2EE Blueprints.

To effectively utilize the tools in the
market, you need to first define an appro-
priate team for your application. The
skillsets you’ll need can be broadly classi-
fied into the following areas:
• Front-end graphics
• JSP/servlet/HTML/Web development
• EJB/middle-tier Java components
• Database and application server admin-

istration

The following is an example of an EJB-
based project. If your application requires
development using Web services, JMS,
JCA, or other Java platform APIs, you’ll
have to define your team accordingly.
While it’s possible to “overload” develop-
ers to work across the different areas, in a
complex application the pragmatic
approach is to assign developers to spe-
cific areas and migrate them to other
areas when needed.

Fortunately, there are resources in the
market that will aid you in defining the
appropriate architecture. The J2EE ven-
dors have mature offerings that help you
develop reusable components, as well as
environments that enable you to migrate
components across the tiers. Several
online and print resources for applying
good design patterns and best practices
are available too.

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor of XML-Journal. A lead architect with a software solutions firm

based in Dallas, he’s well versed in Java,Web, and XML technologies.

Rational
Software

www.rational.com/offer/javacd2

Java COM

8 JULY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E Certificate Authorization in Your J2EE PKI

S E C U R E C O M M U N I C A T I O N

JSSE requires trusted certificates for
authentication services, but my client
had no Public Key Infrastructure (PKI) in
place for certificate generation and dis-
tribution. So I built a PKI implementa-
tion where my client acted as the certifi-
cate authority and then integrated this
PKI with J2EE systems via JSSE to pro-
vide secure communication services. In
this article, I’ll demonstrate how you can
do the same. (The source code is avail-
able on the JDJ Web site, www.sys-
con.com/java/sourcec.cfm.)

PKI/JSSE Overview
If you already have a PKI in place or

have other experience with key-based
cryptography, you may want to skip this
section. For those new to the subject,
the following brief overview provides
some of the key terms and acronyms
used throughout this article. There’s a lot
to absorb here, but the actual applica-
tion of these concepts in the following
sections should make matters more
clear.

One of the additions to the upcom-
ing release of J2SDK 1.4 will be Java
Secure Socket Extension 1.0.2. Currently
available as an optional add-on, JSSE is
a set of Java packages that enables

secure Internet communications via
Secure Sockets Layer (SSL) v3 and
Transport Layer Security (TLS) 1.0 pro-
tocols.

Netscape developed SSL in 1994 and
subsequently transferred control of the
protocol to the Internet Engineering
Task Force. The IETF renamed SSL to
Transport Layer Security (TLS), and
released their first specification in
January 1999. TLS 1.0 is a modest
upgrade to the most recent version of
SSL, version 3.0, and the differences
between the two are minor.

SSL and TLS use public key cryptog-
raphy to provide authentication, secret
key cryptography to provide privacy,
and a message authentication code to
provide data integrity. While in this arti-
cle I focus on the use of a key pair for
authentication purposes, all these cryp-
tographic processes require only one.

One key in the pair is made public
and the other is held strictly private. For
authentication purposes, the public key
in a key pair is associated with a certifi-
cate. A certificate in a PKI implementa-
tion is an electronic document used to
identify a communicating entity by its
association with a public key. Since cer-
tificates are used to address the problem

of impersonation, their distribution
must be governed by a trustworthy enti-
ty. These entities are known as certifi-
cate authorities (CAs).

When you participate in a client-
authenticated TLS or SSL conversation,
you receive your counterparticipant’s
certificate. The certificate specifies the
identity of your counterparticipant and
guarantees it by providing a certificate
authority’s signature. The CA in this case
acts much like a notary. If you trust the
notary, you can trust the certificate. CAs
for the uncontrolled communication
encouraged by the World Wide Web are
typically independent third parties who
charge hundreds of dollars for the
issuance of a single certificate. This
expense is not due to the cost of produc-
ing a certificate, but to the costs
involved in ensuring that an entity
requesting a certificate is in fact who it
claims to be.

In an enterprise system where multi-
ple communicating parties are con-
trolled by a single entity, it makes little
sense to incur this expense. You can save
time and money while maintaining
internal control of your PKI by establish-
ing yourself as the CA in your secure
communications. So let’s get to it.

Becoming a CA
JSSE was not included in Java

Development Kits prior to version 1.4,
so you may need to install JSSE as an
optional extension to your Java plat-
form. Luckily, the JSSE distribution
includes explicit installation instruc-
tions, making this step a breeze. Next,
you’ll need an SSL toolkit capable of
issuing X.509 certificates. I recommend
OpenSSL because it’s open source, well
documented, and free. There are several
other options available including man-

WRITTEN BY
ERIC SIMMERMAN

When a client recently requested secure communica-
tion among multiple platform boxes distributed across three con-
tinents, I decided to leverage the 100% Java-based security avail-
able via Java Secure Socket Extension.

Integrate self-certified certificates
with J2EE systems via JSSE

You can save time and money while
maintaining internal control of your
PKI by establishing yourself as the
CA in your secure communications

“
” 9JULY 2002

Java COM

Metrowerks
www.wireless-studio/com

Java COM

10 JULY 2002

S E C U R E C O M M U N I C A T I O N

aged services, but I’ll be using OpenSSL
for demonstration purposes.

Once you have the necessary soft-
ware installed, the next step is to create
your certificate authority private key
and certificate. I’ll create mine with the
single-line command:

openssl req -new -x509 -newkey

rsa:2048 -config openssl.cnf -key-

out rootCAKey

-out rootCACert -days 3650 -rand

"install.log:sunnyday.gif"

The first option “req” signifies that
we’re performing an X.509 certificate
management operation, followed by
“new” and “x509” showing that we’re
creating a new certificate without a cer-
tificate request. The “newkey” parame-
ter specifies the type of private key
along with its size in bits. The “days”
parameter specifies that this certificate
will be valid for 10 years, and the “rand”
parameter points to a couple of files
used to help randomize my key genera-
tion.

Once you execute this command,
you’ll be prompted for a pass phrase
that will be used to encrypt and decrypt
your new private key. When choosing a
pass phrase and restricting access to
your CA private key, keep in mind that
your private key is a cornerstone of your
PKI and that its safekeeping is vital. After
confirming your pass phrase, you’ll be
prompted for the attributes of your CA
certificate as shown in Listing 1.

OpenSSL generates base64 encoded
certificates between “-----BEGIN-----”
and “-----END-----” lines by default.
This format is commonly but mistaken-
ly referred to as PEM format. True
Privacy Enhanced Mail format is actual-
ly used by some SSL servers like old
Lotus Domino and 4D WebSTAR Server,
so I’ll refer to the OpenSSL format as
OSSL. The JSSE integration tools expect
OSSL-formatted certificates. Regardless
of which SSL toolkit you used to com-
plete this step, your final product should
be an OSSL certificate and a private key.
These two components, along with your
SSL toolkit, provide all you need.
Congratulations, you’ve successfully
become a certificate authority.

JVM Integration
Your next step is to tell your JVM that

you’re a trusted CA so it will inherently
trust any certificates you issue. This is
accomplished by adding your CA certifi-
cate to your JVM’s CA certificates key-
store. The default CA certificates key-
store is found in your runtime environ-
ment’s security directory, found under-
neath the lib directory. It’s intuitively
named “cacerts”. We’ll be modifying the
cacerts file, so make a backup copy
before continuing.

The keytool utility distributed with
J2SDK allows us to perform operations
on any JVM keystores, so let’s use it to
examine the default cacerts.

keytool -list -keystore cacerts

When you execute this command,
you’ll be prompted for the keystore
password. The default cacerts password
is “changeit”.

As you can see in Listing 2, the
default cacerts contains certificates
from VeriSign and Thawte, which
together issue the vast majority of Web
site certificates. Our JVM recognizes
most Web-based e-commerce certifi-
cates already. Now let’s add our CA cer-
tificate to the keystore.

keytool -import -alias newCA -file

rootCACert -keystore cacerts

When asked if you wish to trust this
certificate, answer “yes”. If you examine
the cacerts keystore again, you’ll find
that your CA certificate is listed under-
neath the alias you provided. You’re now
registered as a CA in your JVM. Let’s use
our new power as a CA to facilitate an
SSL conversation between two parties.

SSL Demonstration
To demonstrate that your JVM will

trust certificates that you issue, we’ll
set up an SSL-enabled conversation
between Alice and Bob. Alice and Bob
represent two servers in an enterprise
system that need to communicate
securely. For this demonstration you can
use, but do not need, two separate
boxes. To keep things simple, we can just
launch two JVMs on the same box and
share the same local cacerts file (see
Figure 1). In this figure, configuration A
shows the setup for the demo running
on separate boxes. Configuration B
shows the setup for the demo running
on one machine.

Regardless of your hardware setup,
both Alice and Bob will need access to a
cacerts that we inserted our CA certifi-
cate in. Each communicating entity also
needs a personal keystore. Let’s make
two copies of our cacerts file and place
them in a working directory. Name the
first copy aliceStore and the second
bobStore. Next, we’ll generate a public
and private key pair for Alice and store
the pair in her personal keystore. A
screenshot of this process is shown in
Listing 3.

Alice now has a 1024-bit RSA key,
which will be valid for 365 days. This key
pair allows Alice to participate as an
unauthenticated client in an SSL con-
versation. However, in our demonstra-
tion system, we want to guarantee the
identity of all conversation participants.
Since Alice needs a certificate to partici-
pate as an authenticated client, she’ll
need to generate a certificate request to
send to her certificate authority.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Possible configurations for the SSL demonstration

11JULY 2002

Java COM

Sun
Microsystems

www.sun.com/forte

Java COM

12 JULY 2002

S E C U R E C O M M U N I C A T I O N

keytool -certreq -alias alice -sigalg

MD5withRSA -file aliceCSR -keystore

aliceStore

Enter keystore password: changeit

Note that my keytool utility balks on
this step if the key generated in the last
step has spaces in any Distinguished
Name attributes. So, I used “Tallán” for
my organization name since “Tallán,
Inc.” threw an exception. If you com-
plete this step successfully, you’ll have
a certificate request for Alice. Now we
can put our CA hat back on and gener-
ate a certificate according to Alice’s
request.

openssl x509 -req -CAcreateserial -

CAkey rootCAKey -days 365 -CA

rootCACert -in

aliceCSR -out aliceReply

Loading 'screen' into random state -

done

Signature ok

subject=/C=US/ST=Connecticut/L=Glaston

bury/O=Tallan/OU=Server/CN=Alice

Getting CA Private Key

Enter PEM pass phrase: [passphrase]

The resulting aliceReply is a certifi-
cate that’s valid for 365 days. We return
this certificate to Alice, which needs to
store this certificate alongside her key
pair in her personal keystore.

keytool -import -alias Alice -trust

cacerts -file aliceReply -keystore

aliceStore

Enter keystore password: changeit

Certificate reply was installed in

keystore

Great, Alice is all set. Now just repeat
the same procedure for Bob. Once you
have Bob’s certificate stored in bobStore,
it’s time to work with some code.

There are four classes that we’ll use
in this demonstration. The first,
SSLDemoException, is a simple wrapper
around the Exception class. There’s
nothing to it. The other common class is
the abstract base class SSLDemo, which
contains some common features of the
client and the server. The first item of
interest in SSLDemo is the static initial-
izer, where I dynamically add the
Cryptographic Service Provider “Sun-
JSSE” to my list of security providers, as
described in the JSSE installation
instructions. I also override the default
keystore used by the TrustManager. This
step designates the keystore that holds
all my trusted CA certificates.

To improve performance for multi-
ple connection conversations, my con-
structor preseeds a pseudorandom
number generator that will be used to
generate each SSLContext. I also load
my personal keystore upon construc-
tion. My personal keystore holds the
certificate chain needed to validate my
own certificate. As an example, Alice’s
personal keystore must hold Alice’s cer-
tificate and our CA certificate.

Since a good portion of the JSSE-spe-
cific logic is encapsulated in my base
class, my client and server classes are
kept relatively clean of JSSE-specific
code. Each must define its personal key-
store and use SSL-specific socket facto-
ries. In addition, the BobServer condi-
tionally sets client authentication on its
SSL-enabled server socket.

Let’s put the code into action and
step through an SSL conversation. First
start the BobServer with client authenti-
cation enabled.

java BobServer true

Bob is listening on port: 4242

Then invoke AliceClient

Java AliceClient "Hello Bob, this is

Alice"

Sending message to Bob: Hello Bob

Bob's Reply: RE: Hello Bob - Hello

Alice, this is Bob.

Done...

The result seems a bit anticlimactic
from the outside, but Figure 2 details the
more impressive internal workings.

As you can see, client authentica-
tion simply requires that the client in
the client/server conversation also
presents a valid certificate. Since Alice
has a valid certificate, AliceClient can
talk to BobServer with client authenti-
cation enabled or disabled. However, if
Alice only had a public/private key pair
in aliceStore with no certificate, then
Alice would only be able to converse
with Bob with client authentication
disabled. That demonstration is left as
an exercise for the reader. So Alice
accepted Bob’s certificate and Bob
accepted Alice’s. They both trusted cer-
tificates that we issued as the CA in our
PKI.

Conclusion
We’ve provided you with the ability

to act as a CA in a minimalist PKI imple-
mentation, and demonstrated how you
can integrate your self-certified certifi-
cates with J2EE systems via JSSE. Before
you rush off to develop SSL-enabled
enterprise systems, be aware that I’ve
only exposed you to some fairly complex
material. There’s a lot more to develop-
ing enterprise PKI than simple certifi-
cate generation and distribution. I’ve
detailed enough to make you danger-
ous, but security is only as good as its
weakest link. Careful consideration
must be given to all areas of a system’s
security to avoid negating any that SSL
might provide.

Resources
• Java Secure Socket Extension:

http://java.sun.com/products/jsse/
• The OpenSSL Project: www.openssl.

org/
• Netscape’s Secure Sockets Layer:

www.netscape.com/security/tech-
briefs/ssl.html

AUTHOR BIO
Eric Simmerman is a

senior consultant in
the development

division of Tallán, Inc.,
where he designs and
implements numerous
enterprise systems in
the U.S. and abroad.

He’s a Java 2
Sun Certified

programmer and a
Cisco Certified

Network Associate
and has been

developing
professionally for

seven years.. He holds
a BS in computer
engineering from

Virginia Tech.

J2
SE

H
om

e
J2

E
E

J2
M

E

eric.simmerman@tallan.comFIGURE 2 SSL protocol in action

13JULY 2002

Java COM

Sitraka
www.sitraka.com/jclass/jdj

Java COM

14 JULY 2002 15JULY 2002

Java COM

Infragistics, Inc.
www.infragistics.com

Infragistics, Inc.
www.infragistics.com

Java COM

eb services is intended to
create the synergy of many

applications working together.
The whole is greater than the
sum of its parts. Web services
must be resistant to change and
quickly adaptable to new types
of users who want to use them
on their own terms and with
their own data formats.

These transformational Web
services, as I’ll call them, will rely
heavily on XML to meet this
demand. There’s a good reason
why current Web services proto-
cols such as SOAP and WSDL are
defined using XML. XML is an
excellent format for storing and
managing information in a stan-
dard, extensible manner that is
also flexible. In this article, I’ll
look at why a native XML data-
base can be a powerful comple-
ment to certain types of Web
services.

There are two types of Web
services: RPC-based and mes-
sage-based. RPC-based Web
services are synchronous in
nature and functionally similar
to making a remote method
invocation. Message-based Web
services are asynchronous and
used primarily to pass business
messages (or documents) be-
tween services. To make a J2EE
analogy, an RPC-based Web ser-
vice is very similar to invoking a
method on a session bean, and a
message-based Web service is
very similar to placing a message
on a JMS queue.

Web services are described
using an XML dialect called Web
Services Description Language
(WSDL). WSDL provides a vo-
cabulary for defining exactly how
to access a Web service, whether
it’s RPC or message-based, what
parameters to provide, the URL
to use, and so forth.

Middleware providers have
quickly adopted Web services
and included tools with their
products for managing SOAP
messages with EJBs and servlets.
Many of these tools focus on
shielding the J2EE application
from the XML as much as possi-
ble, minimizing the amount of

J2
SE

H
om

e
J2

E
E

J2
M

E

17JULY 2002

Java COM

16 JULY 2002

Java COM

OW

SilverStream
Software

www.silverstream.com/coals

Java COM

SOAP-specific information that the developer must deal with.
In particular, RPC-based Web services can be implemented
with EJBs and servlets that have no idea they’re being invoked
by SOAP. The tools provide facilities where an XML-to-Java
mapping can take place and the Web services implementation
deals exclusively with Java data types.

This is a worthy goal, as a lot of SOAP programming is low
level and tedious. However, it’s important to remember that in
some cases there’s real value to preserving the XML associat-
ed with a SOAP message. By discarding the XML that com-
poses the SOAP body, a Web service is throwing away the abil-
ity to manage extensible information. This extensibility (an
inherent trait of XML) is key to building a Web service whose
interface is not tightly bound to a particular document struc-
ture.

Message-based Web services provide convenient gateways
for applications that need to submit requests and then get
notified of the response at some point. There’s loose coupling
between these Web services and the caller. Unlike RPC-based
Web services, where the caller must know each parameter of

the service in detail, message-style Web services have the flex-
ibility to accept any structured information in the SOAP mes-
sage body. This makes them very attractive for implementing
Web services that deal with more complex data whose struc-
ture might change over time or depending upon the caller.

Unlike RPC-based, message-based Web services have
direct access to the different parts of the SOAP message that
invoked them. This provides a great deal of flexibility in how
the Web service chooses to process the message. It also means
that the service might be doing a lot of work with raw XML
(e.g., DOM programming) if the document is complex or large.

If many different partners use the Web service, it’s cumber-
some for the developer to change the business logic of the Web
service every time a new partner is added. In addition, it’s a
challenge to store the data found inside the XML document if
every caller is going to provide a document adhering to a dif-
ferent XML Schema. To make life simpler, many applications
simply discard the XML after parsing out the relevant bits of
information and storing them in a relational database. But
sometimes it makes sense to keep not only the relevant data,
but the XML document itself, as parsing and storing destroy
the structure of the document (and add considerable over-
head to the process).

This is where native XML databases fit in. A native XML
database operates very much like a familiar relational data-
base. However, instead of managing data as rows and
columns, it manages data as XML. A native XML database is
built from the ground up to store and manage XML in a parsed
format. This means there’s no conversion taking place from
the XML to some external storage format (either rows and
columns or “BLOBS” of text). Native XML databases typically
outperform relational databases when it comes to storing and
retrieving XML because they store the elements of a document
in a preparsed format.

An XML database is a perfect fit for the needs of the mes-
sage-based Web service outlined earlier. It provides a transac-
tional, secure place to hold incoming messages that won’t bog
down the application’s database of record. But there’s another
key reason for using an XML database – native XSLT support.

XSLT is a language that describes stylesheets for transform-
ing XML into other formats. Most applications that process
XML in some fashion use XSLT primarily to format the XML
before presenting it to a user. XSLT can do far more than sim-
ply convert XML into HTML or the like. XSLT is ideally suited
to transform XML from one dialect to another. When we con-
sider the needs of a Web service that must handle multiple
incoming messages that may be in different formats, XSLT is
the natural choice for solving this problem. A native XML data-
base that has a built-in XSLT processor has a major advantage
over in-memory transformations, namely the ability to handle
large document sizes without excessive memory consump-
tion.

Let’s focus on a concrete example. Imagine a warehouse
that serves a variety of retail suppliers. It contains numerous
inventory types and is constantly expanding the types of
inventory it contains. At different times during the year the

19JULY 2002

Java COM

18 JULY 2002

Java COM

FIGURE 1 Warehouse Web service in BEA Workshop 7.0 Beta

J2
SE

H
om

e
J2

E
E

J2
M

E

is an excellent format for storing and managing

information in a standard, extensible

manner that is also flexible”
“ XMLO

Compuware
Corporation

www.compuware.com/products/optimalj

Java COM

21JULY 2002

Java COM

warehouse will focus on certain types of inventory more regu-
larly than others, which means the population of users is con-
stantly shifting. The warehouse exposes the ability to request
an order via a message-based Web service. I’ve chosen to
implement this example using the beta version of BEA
WebLogic Workshop.

As you can see in Figure 1, the Web service has a few meth-
ods: checkAvailability(), which finds out whether an order can
be filled with current inventory, and requestShipment(), which
starts an order process. For now we can ignore shipNotice(),
which is a callback when the order is ready to be shipped.

Suppliers will invoke the requestShipment() method via
SOAP invocations. The signature of the requestShipment() as
seen in Workshop is shown in Listing 1. (Listings 1–5 can be
downloaded from www.sys-con.com/java/sourcec.cfm.)

This service lets suppliers provide their own identifier
(<supplier>), an identifier for their purchase order (<po-
Number>), and, finally, the purchase order itself (<doc>). The

service is intentionally vague about what the purchase order
should look like so it can handle different kinds.

Currently, the warehouse provides inventory for two sup-
pliers, Acme and BigRetail. The Acme purchase order in its
entirety can be found in Listing 2, the BigRetail purchase order
in Listing 3. Notice that while they’re structurally different,
both documents express basically the same information. What
is important is that both suppliers expect the Web service to
behave the same way for their purchase order.

I implement the method in Workshop by accepting a DOM
node for the document, a string for the poNumber, and an
integer for the supplier code:

public void requestShipment(Node doc, String poNumber,

int supplier) throws Exception

This method needs to store the purchase order somewhere
and then begin the process of filling the order (checking
inventory levels, etc…). Since these processes will need to
refer to the particulars of the purchase order, it would be
unwieldy to write parsing code to handle so many different
types of documents. A cleaner approach is to convert each
incoming purchase order into a “canonical” format and oper-
ate only on those documents (see Figure 2).

Let’s examine the requestShipment method in detail (see
Listing 4). First the code takes the incoming purchase order
and serializes it into an XML string using Apache’s
org.apache.xml.serialize.XMLSerializer class. This string is
then passed to the XML database’s createXMLFile method. I’ve
chosen to use eXcelon’s eXtensible Information Server (XIS) as
the XML database. I’ve “wrapped” a subset of the XIS’s API
using a Web service control named XMLDatabase. This is a
technique specific to Workshop and lets us keep the database-
specific API out of our Web service code. The XIS presents a
filesystem metaphor for storing XML in folders and docu-
ments. The createXMLFile() method takes an XML database
name as the first parameter (“Warehouse”), a path to the file-
name indicating where to store the XML (using the PO num-
ber as the filename in the “incoming” directory), the XML
string itself, and finally an argument indicating whether or not
to trim white space.

Once the original purchase order is stored in the database,
the method can perform a transformation to a canonical for-
mat. The XSLT stylesheet to use for this transformation is cho-
sen based upon which supplier number was received. The
transformed purchase order document is returned by the
applyTransform() method as a string that’s also stored in the
database, this time in the “toBeShipped” directory.

The code then invokes the processOrder() method (the
details of which I have omitted for brevity) that starts the busi-
ness process of filling this order. Once the system has started
processing the order, it can make the callback to issue the ship
notice for the client.

One detail I have not discussed is how to write the XSLT that
transforms the Acme and BigRetail purchase orders into our
canonical format. These stylesheets are not terribly complicat-
ed to write, however, they can be rather tedious to construct.

20 JULY 2002

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

ative XML databases typically

outperform relational

databases when it comes to

storing and retrieving XML”

FIGURE 2 Handling multiple partner documents using XSLT

“NO
Oracle

Corporation
www.oracle.com/ad

Java COM

The XIS comes with a tool called Stylus Studio that helps build
stylesheets visually. Figure 3 shows the XML mapper in Stylus
for the Acme purchase order; Listing 5 is the resulting XSL
stylesheet code. These tools can be helpful for large documents
with many processing rules; however, for simple documents,
hand-coded XSLT can be more than adequate.

There are several benefits to using an XML database as the
intermediary for these types of Web services:
1. Everything is persistent: Every business document is pre-

served in the database in the event of a system failure. This
includes the supplier’s original purchase order that can be
referred to as needed if there is a dispute or question after
an order has been shipped.

2. The Web service does not get involved in transformations: The
role of the Web service is straightforward and does not change
much when a new supplier is brought on board. The way I
have coded, the requestShipment() method would require a
new case statement to be added for a new supplier. However,
even this could be parameterized by storing the stylesheet
names in the database keyed by supplier identifier.

3. Scalability is greatly enhanced: By offloading the XSLT pro-

cessing to an external entity, this Web service can be used by
many suppliers simultaneously without concern for mem-
ory consumption issues. Unlike an in-memory XSLT
processor, the database server will process large docu-
ments, not the application server hosting the Web service.
For extremely large (multimegabyte) documents, this can
have a profound effect on scalability.

4. Extensibility is preserved: For example, if BigRetail decided
to change the <IDENTIFIER> element to include children
(for instance <SUB_ID>), this could cause major code
changes at the warehouse. To make matters worse, if

BigRetail expected that the warehouse would respond with
an XML invoice using the same element-child structure,
the impact to the code could be widespread. By localizing
the XML transformations into XSLT, such extensions are
quickly handled in a single spot without massive code
changes.

5. Knowledge can be gleaned from a supplier’s behavior:
Related to the first point on persistence, because everything
is retained by the system, reports and analysis can be per-
formed on the purchase orders to gain knowledge about the
business. For example, if a particular supplier is repeatedly
requesting the same item during the same week each
month, you might want to target that supplier with dis-
counts on related products the week prior to help increase
sales. Without retaining this information, such opportuni-
ties would be lost.

Summary
Transformational Web services can be easily constructed by

leveraging the strengths of a native XML database and XSLT.
This architecture lends itself to building Web services that adapt
to new types of incoming messages and are tolerant of change.

While the previously discussed example involving process-
ing purchase orders is relatively simple, you can imagine more
complex Web services that rely on the transformational power
of XSLT and the persistence of an XML database. For example,
imagine a Web service that provides a unified view of a loan
application, taking financial information from a variety of
banks and institutions for an individual and providing most of
the application prepopulated.

Another example might be a Web service that acts as a
middleman and clearinghouse for exchanging documents
pertaining to complex legal transactions. It would be nearly
impossible to provide an infrastructure for such services with-
out the flexible storage and transformation facilities provided
by XSLT and a native XML database.

AUTHOR BIO
Bill Dettelback is a systems architect with eXcelon Corporation. Prior to joining eXcelon, he
worked as a senior member of the technical staff at AT&T building AI-based customer care
applications. Bill holds a BS and an MS in computer science from the New Jersey Institute of
Technology.

23JULY 2002

Java COM

22 JULY 2002

Java COM

FIGURE 3 XML to XML mapping in Stylus Studio billd@exln.com

J2
SE

H
om

e
J2

E
E

J2
M

E

ransformational Web services can

be easily constructed by leveraging

the strengths of a native XML

database and XSLT”
“ TO

Precise
Software
www.precise.com/jdj

J2
SE

H
om

e
J2

E
E

J2
M

E Programming Restrictions in EJB Development

E J B S P E C 2 . 0

The concept behind the EJB API is
simple: let the application programmer
concentrate on writing business logic
and shield him or her from complex sys-
tem-level services. To achieve this the
EJB components must operate within a
controlled runtime environment called
the container. This container is respon-
sible for all the system-level services,
such as instance pooling, transaction
handling, security, exception handling,
and data caching. To provide the EJB
component with these low-level servic-
es, it’s mandatory that the EJB interact
only with the container and the
resources provided by it.

Programming Restrictions
Not having to write system-level

services comes at a cost. To ensure
portability across containers from mul-
tiple vendors, the EJB developer is
expected to operate within the frame-
work provided by the EJB specification.
This means there are restrictions on cer-
tain features that are normally available
to the Java developer. The specifications
of the runtime environment (EJB 1.1
ch18, EJB 2.0 ch24) list these restric-
tions.

Some restricted features such as
changing the socket factory of
ServerSocket are rarely used, and this
article won’t elaborate on these types of
restrictions due to the fact that few
developers will be exposed to this level
of programming. However, there are

restrictions that can have a significant
impact on your usual coding tech-
niques.

In this article I’ll state some of the
programming restrictions as defined in
the EJB specifications 2.0 (almost the
same as the 1.1 spec) and try to explain
the reason for the restriction. Where
possible I’ll also include an alternative
approach to reaching your goal without
violating the restriction.

Before diving into the details of the
restrictions, it’s important to clear up
one of the greatest misconceptions in
EJB programming. Many believe that
these restrictions apply only to the code
they write within the EJB’s classes and
not the helper classes used by the EJB
component. This is wrong. The EJB
components run within the container,
hence all classes that run within the
container are subject to the same
restrictions.

An enterprise bean must not use
read/write static fields. Using read-only
static fields is allowed. Therefore, it is rec-
ommended that all static fields in the
enterprise bean class be declared as final.

This restriction is simple but it has
the greatest impact on a programmer’s
normal coding routines. When using a
static field (class variable) you expect all
your instances to access the same field.
If you’re operating within one JVM, this
is a correct assumption; however, the

EJB server can run multiple JVMs for
performance or load-balancing reasons.
Now each JVM contains one or more
instances of the EJB and these instances
no longer reference the same field. In
addition, there’s the problem of concur-
rent access to the static field, because in
the EJB specification the use of the
threading API is also restricted, so no
synchronization mechanisms are avail-
able (more on this later).

To use a static field you’ll have to
declare it to be read-only. A final static
field cannot be changed after it has been
initialized, and instances across all JVMs
will now be consistent.

One problem facing many program-
mers is how to implement the Singleton
pattern (one instance of a particular
class in the whole application) in an EJB
when the use of static fields is restricted.
Some argue that using a JNDI to store a
reference to your instance can solve this
problem, but I haven’t seen a foolproof
implementation that works. You might
be dealing with the same instance but
you still have the concurrency issue to
contend with. Furthermore, a Singleton
EJB would by definition run in a single
container, and that means introducing a
single point of failure. Since the EJB
architecture is all about load balancing
and fault tolerance, I believe the
Singleton pattern should not to be used
in distributed EJB environments.

If you want to use a Singleton for a
nonblocking and read-only service and

WRITTEN BY
LEANDER

VAN ROOIJEN

In 1998 Sun introduced their distributed server-side component
architecture under the name of Enterprise JavaBeans (EJB). Since
then, the EJB technology has seen a widespread acceptance through-
out the industry.The “write once, run anywhere” philosophy embraced
by the EJB specification is undoubtedly a major factor in its success.An
EJB component can be built once and then deployed on different plat-
forms without recompiling or altering the source code.

Building scalable and robust
enterprise applications

Java COM

24 JULY 2002 25JULY 2002

Java COM

AccelTree
www.acceltree.com

Java COM

26 JULY 2002

E J B S P E C 2 . 0

it’s not a problem having one instance in
each JVM or for each deployed ejb-jar’s
classloader, then the use is warranted.
An example of these services is the
caching of data retrieved through
expensive JNDI calls. You just have to
realize that it’s not a Singleton in the
classic form and use it accordingly.

An enterprise bean must not use
thread synchronization primitives to
synchronize execution of multiple
instances.

As mentioned before, the same EJB
can be run in different JVMs. It’s up to
the container to take care of the object’s
life cycle and any concurrency issues.
Therefore, declaring an EJB compo-
nent’s method to be synchronized is a
violation of the specification. The utility
classes used within the EJB, such as the
Collection classes, are allowed to use the
synchronized keyword on its methods
or blocks of code because these are all
dealing with single instances.

An enterprise bean must not use the
AWT functionality to attempt to output
information to a display, or to input
information from a keyboard.

This one is obvious. The whole con-
cept of separating the GUI layer from
the business logic layer is compromised
if direct interaction is permitted. Most
EJB servers will allow you to print to the
screen from within the container, which
can be useful at times during the devel-
opment process (debugging, etc.); how-
ever, it should not be required in a pro-
duction system.

An enterprise bean must not use the
java.io package to attempt to access files
and directories in the file system.

According to the specifications the
file system is not an appropriate mecha-
nism to access data. Since file systems
are not transactional by nature, it’s a
valid argument. Another problem is that
there’s no resource manager involved in

java.io operations so the container has
no control. Now if an EJB uses files on a
system with heavy client loads, there’s
the chance of running out of file
descriptors and bringing down the sys-
tem.

Java developers are accustomed to
using property files in their applications
because they’re helpful in specifying
configuration settings. A simple mecha-
nism within EJBs called environment
entries provides these parameters. These
environment entries are placed in the
deployment descriptor and consist of a
name, type, value, and description. The
type can be any of the seven primitive
wrapper classes (Integer, Boolean, etc.)
or a String object. The entries are
retrieved through the bean’s environ-
ment, naming context. The following
code provides the deployment descrip-
tor of an EJB:

<enterprise-beans>

<session>

…

<ejb-name>YourBeansName<ejb-name>

…

<env-entry>

<description>the example environ

ment entry< description>

<env-entry-name>entryname</env-

entry-name>

<env-entry-

type>java.lang.String</env-

entry-type>

<env-entry-value>myValue</env-

entry-value>

</env-entry>

</session>

</enterprise-beans>

To retrieve the entry in your code
use:

Context ctx = new InitialContext();

Context env = (Context)ctx.look-

up("java:comp/env");

String myValueString =

(String)env.lookup("entryname");

A legal method to read information
from files within an EJB component is to

use the classloader. The container has
granted the classloader permission to
use the java.io package, therefore it’s
possible to use the getResource() or
getResourceAsStream() method defined
in java.lang.Class to load in a file.

When using a file system it’s best to
access it through a resource manager
the same way you use the
javax.sql.DataSource connection factory
to obtain a connection. To gain access to
a resource (any entity that can be
accessed through a URL string) use a
JNDI lookup to get a handle to the
java.net.URL object and use it to obtain
a URLConnection. By using this mecha-
nism to access a file, the resource is
decoupled from the application code
using the resource. For the application
that’s using the resource, there’s no dif-
ference between the local file system
and one located on the opposite side of
the world.

To achieve the flexibility and scala-
bility of using a resource manager for
URL entities, a resource manager must
be set up in our application server. The
method to declare a resource manager is
vendor-dependent, so consult the con-
tainer’s documentation. Once this is
done, all that remains is adding an entry
in the deployment descriptor of the
bean and the application can use the
resource. The following code provides
the deployment descriptor of an EJB
using a URL resource:

<enterprise-beans>

<session>

…

<ejb-name>YourBeansName<ejb-name>

…

<resource-ref>

<description>the URL of the

resource< description>

<res-ref-name> url/TheResourceURL

</ res-ref-name >

<res-type> java.net.URL</ res-type >

<env-auth>Container</ env-auth >

</ resource-ref >

</session>

</enterprise-beans>

To retrieve the resource in your code
use:

Context ctx = new InitialContext();

java.net.URL url = (java.net.

URL)ctx.lookup

("java:comp/env/url/

TheResourceURL");

java.net.URLConnection conn =

url.openConnection;

//Now create an input stream for

reading

java.io.InputStream is =

J2
SE

H
om

e
J2

E
E

J2
M

E

According to the
specifications the file

system is not an appropriate
mechanism to access data

“
”

27JULY 2002

Java COM

Altoweb
www.altoweb.com

Java COM

28 JULY 2002

E J B S P E C 2 . 0
J2

SE
H

om
e

J2
E

E
J2

M
E

Conn.getInputStream();

// or an output stream for writing to

the resource

java.io.OutputStream is =

Conn.getOutputStream();

An enterprise bean must not attempt
to listen on a socket, accept connections
on a socket, or use a socket for multicast.

In other words, an EJB is not allowed
to act as a network server. This makes
sense since clients are supposed to con-
nect to the EJB using a specified remote
protocol that’s in-line with the imple-
mented security permissions. When a
client uses a socket to connect to the
EJB, it’s a potential security hole. This
does not limit the use of a network sock-
et client from within your EJB. An exam-
ple of such a socket client is a stateful
session bean that queries an existing
inventory system that can be accessed
only through a TCP connection.

The enterprise bean must not attempt
to query a class to obtain information
about the declared members that are not
otherwise accessible to the enterprise
bean because of the security rules of the
Java language. The enterprise bean must
not attempt to use the Reflection API to
access information that the security rules
of the Java programming language make
unavailable.

One feature provided by the EJB
architecture is a security model. It’s pos-
sible to declare programmatic or declar-
ative security roles on methods that can
be called by clients. These clients must
have a required role to be granted per-
mission to invoke the method. By using
the reflection API, it’s possible to bypass
these security restrictions and invoke
methods that you should not have
access to. Any other use of the Reflection
API is unrestricted.

The enterprise bean must not attempt
to create a classloader; obtain the current
classloader; set the context classloader;
set security manager; create a new securi-
ty manager; stop the JVM; or change the
input, output, and error streams.

This basically states that you are not
allowed to alter the runtime environ-
ment of the container. In enterprise
applications, security is one of the most
important issues, and the security man-
agers and classloaders are at the root of
protecting applications from unautho-
rized access of the runtime entities.
Again, the EJB architecture has dealt
with security by having the container be

responsible for managing all access to
the EJBs. By intercepting all method
calls on the entities, the container can
use the Java 2 platform security policy
mechanism to prohibit certain func-
tionality. To be able to perform this the
container must have a stable execution
environment that it creates by using a
set of classloaders and security policies.
If we were to make runtime changes to
them, the container would lose control
over the execution environment and
security could not be guaranteed.

The enterprise bean must not attempt
to manage threads. The enterprise bean
must not attempt to start, stop, suspend,
or resume a thread; or to change a
thread’s priority or name. The enterprise
bean must not attempt to manage thread
groups.

The reason for not being able to sus-
pend, resume, start, stop, or create new
threads again has to do with the con-
tainer’s ability to control the runtime
environment. When dealing with a high-
transaction environment, performance
is an important issue. If there’s no strict
management of resources, like the use
of threads, there’s a good chance that the
application will use too many resources
and slow the system down to unaccept-
able levels. Or worse, the server is no
longer able to serve client requests.

Thread-specific storage is another
problem with using the threading API.
For an EJB container to do its work
properly, it needs to track information
for the current request. In a system with
thousands of simultaneous requests
being processed, it’s important to have
an efficient and manageable way of get-
ting at the required information.

Since the Java 2 platform, there’s a
class called java.lang.ThreadLocal for
storing information associated with a
specific thread. Most container vendors
use a single thread dedicated to servic-
ing a single request, and hereby they can
use the ThreadLocal class to store the
current user, transaction, security con-

text, or any other required parameter
from the request. If an EJB were to create
new threads, the required information
might not be propagated correctly to the
new thread, potentially causing serious
errors.

Not having to manage threads is a
relief for most developers, but not being
able to use custom threads has its draw-
backs. For example, if you have a bean that
needs to query different multiple external
systems (ERP, legacy, etc.), it will have to be
done in a series. Since these systems will
take time to process your request, the time
spent waiting can add up.

If you could use threads, you would
be able call these requests in parallel, sig-
nificantly reducing the overall time need-
ed to process your request. There’s talk of
introducing a limited threading model
into the EJB architecture, and it will most
likely be in the form of an EJB retrieving a
thread from a thread pool managed by
the container. No threading mechanism
has been mentioned in the EJB 2.0 speci-
fications, so it could still be a long way off.

The enterprise bean must not attempt
to pass this as an argument or method
result. The enterprise bean must pass the
result of SessionContext.getEJBObject(),
SessionContext.getEJBLocalObject(),
EntityContext.getEJBObject(), or Entity-
Context.getEJBLocalObject() instead.

The life cycle of all bean instances is
managed by the container. That’s why
we always access the bean through the
EJBObject, never directly. The container
can activate or passivate a bean at any
time, and the client is never aware that
this is taking place. While a client has a
reference to the EJBObject, the contain-
er can passivate the actual bean
instance. When the client invokes a
method through the EJBObject, the con-
tainer intercepts the call and performs
tasks such as activating the bean and
reassociating it with the EJBObject.

This programming restriction is ques-
tionable when you’re dealing with helper
classes. Since the helper classes execute

Not having to manage threads is
a relief for most developers, but
not being able to use custom
threads has its drawbacks

“
” 29JULY 2002

Java COM

Improv
Technologies

www.iimprov-tech.com/jdj/download

Java COM

30 JULY 2002

E J B S P E C 2 . 0

only while the bean is active, theoretical-
ly, the use of the “this” reference should
not cause any problems when used in
this manner, but Sun Microsystems
might want to clarify the issue.

In Practice
Most programming restrictions are

clear and concise, but a few restrictions
are open to interpretation. This is prob-
ably why not all containers enforce
these restrictions rigorously. The con-
tainer from the J2EE reference imple-
mentation throws SecurityExceptions
when the restrictions are violated. Many
commercial EJB servers, such as BEA’s
WebLogic and IBM’s WebSphere, don’t
seem to enforce a lot of these restric-
tions. These servers are still valid imple-
mentations because according to the
EJB specifications, the container may
allow more or fewer permissions to the
enterprise bean instance, which can
prevent portability across different con-
tainers.

When developing EJB components
it’s best to test them against the refer-
ence implementation to verify that they
conform to the specifications. Un-
fortunately, most development projects
are governed by strict deadlines and
portability is not always at the top of the
list. However, some developers forget

that you should stick to the specification
not just because of the portability issue,
but because reliability can also be
affected. Unfortunately, reliability prob-
lems always become apparent near the
end of the development phase when
there’s little time left. If it turns out that
some components need to be reengi-
neered because they violate the pro-
gramming restrictions, it will be a lot
more time-consuming to fix them than
to verify them against the reference
implementation from the start.

One more reason to adhere to the
programming restriction of the EJB
specification is reuse. When you’re in the
business of building solutions for your
clients, you’ll undoubtedly deal with EJB
servers from multiple vendors. The abil-

ity to reuse generic components that
have been tested and proven to work
across multiple EJB servers can save you
significant amounts of time.

The EJB technology has put the
building of scalable and robust enter-
prise applications within reach of a great
number of Java programmers. Un-
fortunately, a number of EJB developers
have never read the specifications and
are unaware of all the programming
restrictions. Hopefully, this article has
cleared up some issues that Java devel-
opers face during their road to profi-
cient EJB development. Just remember,
EJBs are only portable if you write them
that way.

J2
SE

H
om

e
J2

E
E

J2
M

E

The EJB technology has put the
building of scalable and robust

enterprise applications within reach of
a great number of Java programmers

“
”

INT, Inc
www.int.com

AUTHOR BIO
Leander van Rooijen

is a senior
consultant for Cap

Gemini Ernst &
Young in the

Netherlands. A Sun
Certified Java

developer, he’s a
specialist in
server-side

technology. Leander
holds a degree in

mechanical
engineering. lrooijen@cgey.nl

31JULY 2002

Java COM

Jinfonet
Software

www.jinfonet.com/JDJ7.htm

Java COM

32 JULY 2002 33JULY 2002

Java COM

IBM
www.ibm.com/websphere/winning

IBM
www.ibm.com/websphere/winning

Java COM

34 JULY 2002 35JULY 2002

Java COM

IBM
www.ibm.com/db2/rocks

IBM
www.ibm.com/db2/rocks

37JULY 2002

Java COMJava COM

36 JULY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E Are You Ready to Rumble?

S H O W D O W N

While the comparisons may be
defined by some as purely technical,
some have deemed it a battle of corpo-
rate cultures. Sun has certainly chosen
to consider that the battle.

During a lunch discussion with my
fellow officers in the Tulsa Java User
Group, we explored the issues. We also
decided to see if we could get some
vendors to come in and discuss the
issues from both perspectives. This
expanded into a formal debate, and
thus the .NET vs J2EE Smackdown was
born. Our group started to plan this
event; we contacted Microsoft and Sun
and both sides were more than willing
to engage.

On April 25, 2002, in the Williams
Theater in downtown Tulsa, Microsoft
and Sun came together on one stage
(together again, for the first time any-
where) – and the battle was joined. The
officers of the JUG decided to consult
with the officers of the PBUG, and we
held the meeting as a joint venture –
sponsored by both user groups as well as
Oaktree, Inc., a consulting company that
sponsors our groups extensively. We had
two podiums, many microphones, LAN
connections, and team theme songs. It
was exciting to watch as over 200 people
filled the theater to see the Tulsa
Smackdown, to find out what this
debate was really about.

What If They Held a Raging Debate and
Nobody Showed Up?

Microsoft and Sun showed up in
force. Microsoft sent three of their tech-
nical evangelists: Mark “The Doctor”
McLoughlin, Dave “Brick Wall” White,
and Dino “Hannibal” Ciesa, while Sun
sent a team of four of their faithful (and
faith spreading): Bill “The Liberator”
Day, Max “The Preacher” Goff, Rima
“The Instigator” Patel, and Tom “Secret

Weapon” Daly. They were all seasoned
veterans of the software Ring Wars, and
brought with them their colorful styles
and insights. Microsoft chose “Eye of the
Tiger” (from Rocky III) as their theme
song, and as it poured out of the speak-
er systems they came proudly down the
aisle of the theater, their Microsoft
logo’d button-down finery on display.
Sun chose an old Sly and the Family
Stone song “Freedom” as their mantra
and came boldly to the stage during
their song.

The rules for the Smackdown were as
follows: eight questions that each team
had to answer; they were required to
give software examples, state their case
clearly, and show their stuff. Both teams
had the questions ahead of time and
had veto rights over anything they
deemed unworthy. Each team had five
minutes to present their case, then the
other team had a five-minute rebuttal.
They each had two yellow cards to raise
as penalties on the other side if they
deemed a question worthy of an imme-
diate, two-minute rebuttal. It goes with-
out saying that these two teams pulled
their cards and used the maximum on
each and every question.

The crowd was eager for the words,
lines of code, and interfaces to fly, and
so we began with introductions, prizes,
and a lot of good cheer, then the debate
began.

Two Companies Separated by a Common Coast
Sun and Microsoft brought some of

their strongest speakers and came with
a sense of anticipation that reportedly
went far up the chain in their respective
corporate worlds. And both came with
their own specific agenda. Microsoft
came intent on showing a room full of
programmers what their product can do
and how truly RAD it is. Sun came with a

lot of invective and vitriol, and the
intention of making this debate about
the stark differences in their corporate
cultures and goals.

The debate began with five-minute
introductions. Microsoft came on first,
providing a somewhat detailed and very
colorful blanket overview of .NET. They
gave a strong summary of what their
systems could do, how they connected
together, and what we had to gain from
their use.

Sun came out with a copy of “the law-
suit” and began talking about the differ-
ences between the corporate cultures at
Microsoft and Sun. They said, “Point of
fact…” and then quoted the lawsuit
regarding Microsoft’s predisposition for
disposing of the competition and using
unfair trade practices. There was not
much in the way of information about
J2EE.

Top Questions from Our Home Office
in Enid, Oklahoma…

The following are the questions posed
to each side and the approximate
responses.
1. What sets your platform apart from
that of your competitor?

Microsoft talked about the speed with
which they could deploy their product,
the multiple language and platform
independence of .NET, and how easily
integrated it could be.

Sun talked about customer service,
feeling a warm commitment from your
vendor, and avoiding the evil demons
that live in the Seattle area. They also
talked about unfair trading practices
and monopolies.

2. CMP TechWeb defines the term Web
services as “Web-based applications that
dynamically interact with other Web
applications using open standards that

WRITTEN BY
MICHAEL DEASY

There is a raging debate in the developer community:
Microsoft’s new platform .NET versus the Sun standard J2EE. J2EE
has been around for a few years, while Microsoft’s attempt is decid-
edly the new kid on the block.

.NET vs J2EE Smackdown

ESRI
www.esri.com/mapobjectsjava

39JULY 2002

Java COMJava COM

38 JULY 2002

S H O W D O W N

include XML, UDDI, and SOAP.
Microsoft’s .NET and Sun’s J2EE are the
major development platforms that
natively support these standards.” What
is your platform’s level of support for Web
services? Can you show us using your
platform and tools?

Microsoft created a Web service,
deployed it, and brought data in from a
database with a few simple keystrokes.
They had to uncomment some code in
predeveloped areas, and it took a few
seconds for the data to return their
request across the Web, but it was an
extremely impressive demonstration.

Sun did show some slides on this one,
and brought up lists of powerful clients
they had serviced or who had used Sun’s
products.

3. Designing and constructing a multi-
tier transactional Web-based application
to support hundreds (if not thousands) of
simultaneous users is a very daunting
task. How does your platform address
these complexities and empower organi-
zations to build such applications quick-
ly and with minimal expense? Can you
show us using your platform and tools?

Sun approached this with some very
strong examples of Web sites they built
or support involving hundreds and/or
thousands of users. The most impressive
was probably the ESPN Web site, a site
that definitely has a huge fan base. They
did give an example of how to throw
connectivity together very quickly;
unfortunately, it never did load.

Microsoft again showed some
PowerPoint and explained how .NET
can be made more flexible. There was no
time for either contender to get into a
whole lot of detail but they both showed
good examples.

4. Many of our audience members are
software developers who are constantly
looking to hone their skills and learn the
latest technologies. Ultimately, each one
of us will try and decide which platform
will produce the most marketable skill
set. Do you think your platform offers the
most marketable skills and if so, why?

This question brought about surpris-
ing and unexpected responses.
Microsoft gave a two-minute talk on
how to leverage your current skill set
and make use of your C++ and Visual
Basic knowledge. They addressed their
training program and the wide availabil-
ity of classes and skill-building tools,
from online to college classes.

Sun took the stance that if you decid-
ed to become a .NET developer, you
were just in it for the quick buck, the
easy money. The speaker was critical of

anyone who didn’t choose what he con-
sidered the slower but stronger path to
growth and money by learning Java.
Addressing a room full of analysts and
developers with regard to learning skills
quickly and becoming more profitable,
he could have chosen his words differ-
ently. Also, the path to quick money
does not typically lie in the use of tools.

Java does have a huge market share
advantage; perhaps they don’t have a
ready-made platform for their tools, but
no one in the room doubted that they had
the upperhand in this phase of the dis-
cussion. They simply chose, again, not to
present the strong things that they could
do. They continued railing about too
much filthy lucre in the Microsoft camp.

5. Security is becoming increasingly
more important to organizations.
Explain your platform’s security infra-
structure and how it differs from your
competitor’s platform.

This question was really Sun’s chance
to shine. Sun began with a lot of facts
and figures about Microsoft’s security
issues. This has been pretty widely dis-
seminated in the press and Microsoft
quickly confessed that they had indeed
been working very hard at bringing
themselves up to speed. This also led to
an argument over who had raped the Pet
Shop application most thoroughly. Both
sides did a lot of finger pointing, and
they both pointed to a number of bench
tests.

Microsoft and their failing Passport
system did have a decided disadvantage
on this question. While it may be true
that you don’t have to use Passport, it’s
very difficult to get around in a lot of Web
areas without it. It does seem like anoth-
er area where Microsoft was attempting a
coup. Big points to Sun on this question.

6. Gartner estimates that there will be
901 million mobile phone users world-
wide by 2003, while Palm, Inc., continues
to report record sales of their Palm Pilot
handheld. In short, handheld devices are
here to stay and the market is expected to
experience continued growth. Does your
platform support the development of
mobile clients? If so, provide the details.

This question saw great presentations
from both sides. Sun had programs they
had written, then downloaded into their
cell phone during the presentation. The
ease with which the tech displayed
movie sites for Tulsa, letting us all know
what was showing at the AMC 20, was
very cool. It was not really clear how this
was directly J2EE-related. But he did
show a lot of slides regarding their flexi-
bility with many phones.

Microsoft did a similar slide presenta-
tion and was frustrated by the lack of a
mini camera to display their phone
screen. They did a decent presentation,
but again, because they chose to demon-
strate their technological capabilities,
point and set to Sun on this question.

7. The cost of development, deployment,
and maintenance significantly impacts
software development projects. How does
your platform stack up in terms of these
costs when compared to your competi-
tor’s platform?

The question of cost caused a rousing
debate, and as time was running out we
made question seven the last of the
Smackdown.

Microsoft had some very strong points
about the cost of their server software
and .NET platform in general – bringing
their totals in at under $10,000 for a well-
equipped enterprise tool. They were very
critical of Sun and BEA for the costs of
servers and O/S software, quoting num-
bers in the hundreds of thousands and
tearing into their opponent a bit.

Sun retorted with a strong presenta-
tion touting both Linux and Apache as
free and J2EE-compliant. They attempt-
ed to demonstrate this with slides,
which was interesting. However, the Sun
sales reps are not pushing Apache or
Linux – they’re driving the market
toward their O/S, their flavor of UNIX.
Microsoft held the advantage in this
piece of the debate and so our competi-
tion came to a close.

In the final analysis, both teams made
a strong showing. The general consen-
sus was that Microsoft did a better job of
showing off their technological capabili-
ties. They used more samples, and their
actual program examples were breath-
taking. There was a bit of disappoint-
ment in Sun’s approach – attacking
Microsoft’s character – and any time
they used their technology to advantage
they looked very strong, probably
stronger and older in their product life-
time.

The various camps gathered around
the myriad reps out front and collected
trinkets into their bags: pens, books, and
T-shirts. The Microsoft crowd was very
pleased with their presentations, and
the Sun crowd felt very vindicated and
righteous. It was a strong event on the
whole, educating at times, frustrating at
others. No matter whose side you might
fall on though, you got to see some
sparks and hear a couple of major play-
ers tell their tale.

J2
SE

H
om

e
J2

E
E

J2
M

E

AUTHOR BIO
Michael Deasy works
in the Seattle area as

a project manager,
Web designer, and

freelance writer. He
has been working
with PowerBuilder

since version 3. Mike
holds an MBA from
Southern Nazarene

University. deaser26@hotmail.com

Canoo
Engineering AG

www.canoo.com/ulc/

jasonbell@sys-con.com

There’s no escaping that the evolu-
tion of programming languages
has its advantages and disadvan-

tages. The addition of the java.util.regex
package to the JDK1.4 API is a perfect
example of Java’s development since 1995.
However, there’s a group of programmers
who know only Java and no other lan-
guage, so it’s difficult for them to see why
things like regular expressions are includ-
ed. It all boils down to how your own
career evolved.

My own personal evolution is a stran-
gled route through a number of languages:
Perl, Unix shell scripting, C, and PHP. I
added Java to my skillset halfway through,
and I was constantly trying to adapt my
thought patterns from Perl to Java code.
After many late nights trying to get things
to work in Java, it all paid off in the end.
However, I always wondered why the Java
API didn’t have any regular expressions.
Until I found third-party packages, such as
gnu.regexp and OROMatcher classes, I
always went back to Perl and completed
the job that way.

I believe that it’s time for us to ask our-
selves honestly how our own evolution is
progressing. Are we constantly learning or
are we stuck in a loop?

Musicians spend hours perfecting their
skills by practicing scales and arpeggios
and familiarizing themselves with their
instruments. Before any musician joins an
orchestra (or a garage band for that mat-
ter), he or she needs to achieve a certain
skill level.

Musicians also have access to history,
and as seasons come and go you’ll notice

that certain artists are being influenced by
other artists. You’ll always have pioneers,
however. The Beatles were musical pio-
neers and a multitude of bands have since
been influenced by them.

There are parallels we can draw on as
Java programmers. We study the APIs and
try numerous examples and routines to
satisfy ourselves that we have grasped the
concept so when the time arises, we can
transfer our knowledge to the situation at
hand. The success of any musical per-
formance is based on the ability of the
performers to interpret a piece of music;
the success of any Java project is based
the ability of the programmers to inter-
pret the requirements of a project plan.

Where does our programming history
come from? Well, there’s plenty of informa-
tion available on the Internet, mailing lists,
books, CDs, as well as from your colleagues.

Have you ever searched Google, for
example, in an attempt to solve that illu-
sive problem, and then been presented
with seven different ways of dealing with
it? We need to easily pick out the dia-
monds from the dust, the documents that
will encourage and educate people who
need it the most. What are we doing to lay
this foundation down for future program-
mers?

Site References
• Dictionary.com: www.dictionary.com
• JDK1.4: http://java.sun.com/j2se/1.4/
• OROMatcher classes: http://jakarta.

apache.org/oro/index.html
• gnu.regexp package: www.cacas.org/

java/gnu/regexp/

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

Learning from History
JASON BELL J2SE EDITOR

41JULY 2002

Java COM

40 JULY 2002

J 2 S E I N D E XX

Learning from History
There’s no escap-

ing that the evolution of pro-
gramming languages has its

advantages and disadvan-
tages. And I believe it’s time
for us to ask ourselves hon-
estly how our own evolution
is progressing. Are we con-

stantly learning or are we
stuck in a loop?

By Jason Bell

Hello World! in 70 Bytes
The Austin Java

User Group recently spon-
sored a contest to create the

smallest Java Hello World!
program. The rules were sim-
ple: create the smallest Java

class that when executed will
display the text “Hello World!”

(and only that text) to the
console. In this article, I

explain how I arrived at my
70-byte solution and hope

that in the process you learn
a bit about Java class files

and the Java Virtual Machine.
I also urge you to take the

challenge before viewing my
solution.

by Norman Richards

ZX Spectrum Emulator
in Java

Recently, I embarked on a
project to write an “emula-
tor” (in Java) that could run

some favorites from the pro-
lific library of Spectrum soft-

ware. This article is about the
challenges encountered and
my accomplishments during

this adventure.
by Razvan Surdulescu

40

44

50

Java COM

AUTHOR BIO
Jason Bell is a programmer based in York, England. He has been involved in numerous Web projects over the past

five years, the last two of which have been servlet-based.

Evolution: A gradual process in which something changes into a different and
usually more complex or better form.

Parasoft
www.parasoft.com/jdj7

42 JULY 2002

Java COM

43JULY 2002

Java COM

New Atlanta
Communications

www.newatlanta.com

New Atlanta
Communications

www.newatlanta.com

45JULY 2002

Java COMJava COM

44 JULY 2002

Hello World! in 70 Bytes

J A V A C L A S S F I L E S

The restrictions were that the class
must execute under Sun’s 1.3 JRE. It may
make use of any class or file distributed
with the JRE, but any additional files
(excluding arguments on the command
line) count against the byte total of the
Java class file.

In this article, I explain how I arrived
at my 70-byte solution. I hope that in the
process you learn a bit about Java class
files and the Java Virtual Machine. I also
urge you to take the challenge before
viewing my solution.

Getting Started
Let’s first look at the canonical Java

Hello World! program.

public class Hello

{

public static void

main(String[] args)

{

System.out.println

("Hello World!");

}

}

Compiling this class with javac pro-
duces a 416-byte Java class file. That’s quite
a few bytes just to print “Hello World”. Javac
generates debugging information by

default. Debugging can be disabled with
the “-g:none” option to reduce the byte
count to 336 bytes, but to go much further
we have to look at exactly where those
bytes are going.

Figure 1 shows the basic compo-
nents of a Java class file. In the initial
Hello World program, as with most Java
classes, the bulk of the bytes come from
the constant pool. The method declara-
tions are the next largest chunk, but
most of the information used in a
method declaration is stored in the con-
stant pool. Table 1 shows the constant
pool from the first class.

Note that the constant pool contains
most of the details of our code. The class
name and method names are all there as
are the names and types of all the exter-
nal classes, methods, and variables we
touch. Constant values (such as our
“Hello World!” text) are included too.
Also, note that constant pool entries link
to other constant pool entries. For
example, a method reference entry links
to a class reference entry (which in turn
references a UTF8 text entry holding the
name) and a name and type entry
(which links to the UTF8 text entries
holding the name and the method sig-
nature).

To realize how this is used, consider
the Hello class expressed as bytecode
with constant pool references indicated
by the number sign (“#”) and the con-
stant pool index number. Don’t be
scared off by the bytecode. It’s not as
complicated as it looks. If you’ve ever
programmed an assembler of any sort,
this should look quite natural. If not,
don’t worry. The important thing to note
is that in terms of size, the actual byte-
code is very small (the constructor is 5
bytes and the main method is 9)
because almost everything we do refer-
ences a field or class or constant defined
in the constant pool, which is quite large
(see Listing 1).

First Steps
To have maximum control over what

goes in the class file I decided to gener-
ate the class file directly. Normally a tool
such as Jakarta Bytecode Engineering
Library (BCEL) would be the best choice
to generate the class, but in this case I
wanted maximum control (and under-
standing) of each byte that goes into the
class file.

My first attempt was to simply gener-
ate a basic Hello World program, mini-
mizing constant pool references and
removing any unnecessary portions of
the class. There are three main steps.

First, I wanted to make sure I gener-
ated only the main method. When com-
piling a class, the Java compiler will
insert a default constructor if you don’t
specify one. However, this is only neces-
sary if you need to create an instance of
the class. If you just need to use the
main method, you don’t need to be able
to create an instance and can remove
the constructor.

Next, I wanted to inherit from an
already referenced class. Every class ref-
erenced in the class file requires entries
in the constant pool. I can remove the
java.lang.Object constant pool reference
I would normally get (remember, even if
you don’t specify it in your Java source
code, your class extends java.lang
.Object) by specifying some other class
already referenced in the class file. The
choices were java.io.PrintStream and
java.lang.System. (java.lang.String is
used as a parameter only so we don’t
have class information for it in the con-
stant pool.) Since java.lang.System is
final and cannot be extended, the choice
was java.io.PrintStream.

Finally, since the name of the class is
also stored inside the class file, instead
of naming the class “ReallySmall-
HelloWorldClass”, I wanted to choose a
name whose text is already in use in the
constant pool. Some choices were

WRITTEN BY
NORMAN RICHARDS

The Austin Java User Group recently sponsored a contest to
create the smallest Java Hello World! program. The rules were
simple: create the smallest Java class that when executed will dis-
play the text “Hello World!” (and only that text) to the console.

Take the challenge

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Java class file

Macromedia
www.macromedia.com/go/jrun4jdj

47JULY 2002

Java COMJava COM

46 JULY 2002

J A V A C L A S S F I L E S

“print”, “out”, and “main”, the names of
methods and fields referenced. I chose
“Code”, which is the constant pool tag
associated with the Code attribute in the
method. The Code attribute is where the
bytecode that’s associated with the
method is stored.

Code to generate this first class is in
GenClass1.java. (The source code and
Listing 1 can be downloaded from the
JDJ Web site, www.sys-con.com/java/
sourcec.cfm.) The resulting class file is

248 bytes. The following code
snippet shows the bytecode,
and Table 2 shows the constant
pool.

public class Code

extends

java.io.PrintStream

{

public static void

main(String[] args)

{

;; System.out.print

;; ("Hello World")

;; get System.out

0: getstatic #13

;; get the String

;; "Hello World!"

3: ldc #18

;; invoke print method

5: invokevirtual #16

8: return

}

}

Hello Command Line
Next, remove the “Hello

World!” from the constant
pool and pass it in as an argu-
ment on the command line. It
takes 3 bytes (aload_0, icon-
st_0, aaload) to reference
args[0] as opposed to 2 bytes
to load a constant (ldc) string
from the constant pool; how-
ever, not needing to store the
text in the constant pool frees
up two constant pool slots
and brings the total size
down to 231 bytes. Code to
generate the class is in
GenClass2.java.

The constant pool is similar
enough to the first example that
we can skip it, but keep in mind
that some of the positions in the
constant pool have changed.
The following is the new byte-
code.

public class Code

extends java.io.PrintStream

{

public static void

main(String[] args)

{

;; System.out.print(args[0])

;; get System.out

0: getstatic #12

;; args variable

3: aload_0

;; constant int value 0

4: iconst_0

;; get args[0]

5: aaload

;; invoke print

6: invokevirtual #15

9: return

}

}

sun.misc.MessageUtils
Even at 231 bytes the class file is still

quite large. Most of the bloat is associat-
ed with retrieving the static field out on
java.lang.System and invoking the print
method on java.io.PrintStream. With
that in mind, I scoured the JRE-provided
classes for code that would either get
System.out for me or print some given
text to stdout. Fortunately, there is such
a class, sun.misc.MessageUtils, that pro-
vides a static method “toStdout” that
will print a string to System.out. Using
this, I can replace the static field refer-
ence (System.out) and the method invo-
cation (java.io.PrintStream.print) with
one single static method invocation
(sun.misc.MessageUtils.toStdout). Of
course, since java.io.PrintStream is no
longer in the constant pool, a new
superclass is needed. Fortunately, the
MessageUtils class is now available to
take on this job. Code to generate this
class is in GenClass3.java. The resulting
class file is 171 bytes. The following code
snippet shows the bytecode, and Table 3
shows the constant pool.

public class Code

extends sun.misc.MessageUtils

{

public static void

main(String[] args)

{

;; toStdout(args[0])

;; args

0: aload_0

;; constant 0

1: iconst_0

;; get args[0]

2: aaload

;; invoke toStdout

3: invokestatic #9

6: return

}

}

J2
SE

H
om

e
J2

E
E

J2
M

E

TYPE VALUE
1 METHOD REFERENCE class=#6 signature=#12
2 FIELD REFERENCE class=#13 signature=#14
3 STRING CONSTANT value=#15
4 METHOD REFERENCE class=#16 signature=#17
5 CLASS REFERENCE name=#18
6 CLASS REFERENCE name=#19
7 UTF8 TEXT "<init>"
8 UTF8 TEXT "()V"
9 UTF8 TEXT "Code"
10 UTF8 TEXT "main"
11 UTF8 TEXT "([Ljava/lang/string;)V"
12 NAME/TYPE name=#7 type=#8
13 CLASS REFERENCE name=#20
14 NAME/TYPE name=#21 type=#22
15 UTF8 TEXT "Hello, World!"
16 CLASS REFERENCE name=#23
17 NAME/TYPE name=#24 type=#25
18 UTF8 TEXT "Hello"
19 UTF8 TEXT "java/lang/Object"
20 UTF8 TEXT "java/lang/System"
21 UTF8 TEXT "out"
22 UTF8 TEXT "Ljava/io/PrintStream;"
23 UTF8 TEXT "java/io/PrintStream"
24 UTF8 TEXT "println"
25 UTF8 TEXT "(Ljava/lang/String;)V"

TABLE 1: Constant pool for Hello World

TYPE VALUE
1 CLASS REFERENCE name=#3
2 CLASS REFERENCE name=#10
3 UTF8 TEXT "Code"
4 UTF8 TEXT "main"
5 UTF8 TEXT "([Ljava/lang/String;)V"
6 UTF8 TEXT "Hello World!"
7 UTF8 TEXT "java/lang/System"
8 UTF8 TEXT "out"
9 UTF8 TEXT "Ljava/io/PrintStream;"
10 UTF8 TEXT "java/io/PrintStream"
11 UTF8 TEXT "print"
12 UTF8 TEXT "(Ljava/lang/String;)V"
13 FIELD REFERENCE class=#14 signature=#15
14 CLASS REFERENCE name=#7
15 NAME/TYPE name=#8 signature=#9
16 METHOD REFERENCE class=#2 signature=#17
17 NAME/TYPE name=#11 type=#12
18 STRING CONSTANT value=#6

TABLE 2: Constant pool GenClass 1

/n software inc.
www.nsoftware.com

49JULY 2002

Java COMJava COM

48 JULY 2002

J A V A C L A S S F I L E S

Goodbye Main
At this point, I began to lament the size

of the signature of the main method –
“([Ljava/lang/String;)V”. I decided to try
removing the main method entirely and
echoing the text in a static initializer block.
“<clinit>”, the internal name for the static
initializer, is a few bytes longer than “main”,
but the size of the static initializer’s method
signature “()V” is much shorter than
main’s. For this to work, I needed to find a
class with a main method that doesn’t echo
any text to the console to extend, so we still
have an accessible main method.

The shortest named one I found
among the various JRE classes is
sun.Applet.Main, the main program for
the Java applet viewer application.
Applet viewer requires a command
input argument, but we can pass in the
class file name “Code.class” as a com-

mand-line argument. Applet
viewer will silently ignore the
input since it contains no
applet tags. The only drawback
to this is that “Hello World!” had
to go back into the constant
pool, bringing the solution up
to 194 bytes (see Table 4). Code
to generate this class is in
GenClass4.java.

public class Code

extends sun.applet.Main

{

static {

;; sun.misc.MessageUtils

;; .toSdout("Hello

World!")

;; get String "Hello

World!"

0: ldc #9

;; invoke toStdout on

;; sun.misc.MessageUtils

2: invokestatic #10

5: return

}

}

OPC – Other People’s Code
Despite making the class file

larger, this was still an impor-
tant step. What I needed was to
find a way to further leverage
hidden classes in the JRE. I’d
already found a class with a
main method to use that did
nothing, allowing the static ini-
tializer to do its magic, but what
I really needed was a class with
a main method that would just
print out “Hello World!”

Apparently, that’s not such a
far-fetched idea. Nestled deep within
Sun’s 1.3 JRE is sun.security.util.Property-
Expander with the following method:

public static void

main(String args[])

throws Exception

{

System.out.println(

expand(args[0]));

}

The expand() method doesn’t alter
the text “Hello World!”, so we’re effec-
tively just printing args[0] by itself. As
long as we pass in the text “Hello
World!” as the first argument to the Java
program, as we were doing earlier, we’re
all set. Since there are longer methods
with bytecode associated with the class,
the text “Code” is no longer available as

a class name. Unfortunately, there are
no other text fields to use in the con-
stant pool. Since every class must have
a superclass, and a class cannot be its
own superclass, we have to add an entry
to the constant pool for the name.
However, it turns out that the Sun JVM
allows for a class to have a zero length
name, allowing us to keep the new con-
stant pool entry as small as possible. If
this weren’t the case, we would have to
choose a name like “a”.

The code to generate this class file
is GenClass5.java. The resulting byte-
code is 70 bytes, consisting of four con-
stant pool entries (two for the class
spec and two for the superclass spec)
and no fields, methods, or attributes
(see Table 5).

extends

sun.security.util.PropertyExpander

{

}

Of course, we could throw out the
generated class file completely and sim-
ply invoke Java with the class directly.

java

sun.security.util.PropertyExpander

'Hello World!'

However, this wouldn’t be a legal
submission, so the 70-byte solution was
the best one I could come up with.

Conclusion
Although hacking class files doesn’t

have much practical relevance, I found
the challenge to be quite a lot of fun. And,
even if you have never touched a class file
or Java bytecode, the Hello World prob-
lem is small enough that you should be
able to gain a better understanding of
how the internals of Java work.

Acknowledgments
I’d like to thank Jeff Schneider and

Momentum Software for devising the
Hello World problem and the Austin
Java Users Group for sponsoring the
contest.

Resources
• Java Virtual Machine Specification:

http://java.sun.com/docs/books/vm
spec/

• Jakarta Byte Code Engineering Library
(BCEL): http://jakarta.apache.org/
bcel/

• Engel, J. (1999). Programming for the
Java Virtual Machine. Addison-
Wesley.

J2
SE

H
om

e
J2

E
E

J2
M

E

TYPE VALUE
1 CLASS REFERENCE name=#3
2 CLASS REFERENCE name=#4
3 UTF8 TEXT "Code"
4 UTF8 TEXT "sun/misc/MessageUtils"
5 UTF8 TEXT "toStdout"
6 UTF8 TEXT "(Ljava/lang/String;)V"
7 UTF8 TEXT "<clinit>"
8 UTF8 TEXT "()V"
9 STRING CONSTANT value=#12
10 METHOD REFERENCE class=#2 signature=#11
11 NAME/TYPE name=#5 type=#6
12 UTF8 TEXT "Hello World!"
13 UTF8 TEXT "sun/applet/Main"
14 CLASS REFERENCE name=#13

TABLE 4: Constant pool for GenClass 4

TYPE VALUE
1 CLASS REFERENCE name=#3
2 CLASS REFERENCE name=#4
3 UTF8 TEXT ""
4 UTF8 TEXT "sun/security/util/

PropertyExpander"

TABLE 5: Constant pool for GenClass 5

TYPE VALUE
1 CLASS REFERENCE name=#3
2 CLASS REFERENCE name=#4
3 UTF8 TEXT "Code"
4 UTF8 TEXT "sun/misc/MessageUtils"
5 UTF8 TEXT "toStdout"
6 UTF8 TEXT "(Ljava/lang/String;)V"
7 UTF8 TEXT "main"
8 UTF8 TEXT "([Ljava/lang/String;)V"
9 METHOD REFERENCE class=#2 signature=#10
10 NAME/TYPE name=#5 type=#6

TABLE 3: Constant pool for GenClass 3

AUTHOR BIO
Norman Richards

works at Commerce
One Labs, the

research division of
Commerce One. norman.richards@commerceone.com

Altova
www.altova.com

Spectrum Emulator in JavaSpectrum Emu
ZXZX

Sir Clive Sinclair had a dream: everyone should

own a computer. In the early ’80s, this was quite

an ambitious, almost foolhardy thing to say,

given that the cost of computing machin-

ery was well beyond the grasp

of individuals. Despite the hurdles,

Sinclair Research Ltd. produced one

of the most popular personal computers

in Great Britain and, later on, in Europe:

the Sinclair ZX Spectrum.

w
ri

tt
en

 b
y

R
az

va
n

Su
rd

ul
es

cu R I S I N G T O T H E C H A L L E N G ET O T H E C H A L L E cu

Java COM Java COMJava COM

50 JULY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

JULY 2002 51

Java COMJava COM

As a child I owned one of these machines, and because of
it I am, happily, a computer scientist. Although the Spectrum
is no longer produced, my nostalgia for this machine never
quite disappeared.

Recently, I embarked on a project to write an “emulator”
(in Java) that could run some favorites from the prolific
library of Spectrum software. This article is about the chal-
lenges encountered and my accomplishments during this
adventure. The source code can be downloaded from
www.sys-con/java/sourcec.cfm.

What Is an Emulator?
According to Merriam-Webster an emulator is “hardware

or software that permits programs written for one computer
to be run on another usually newer computer.” Emulators are
in relatively common use today, although they are invisible –
a powerful testimonial to the fact that they do their job well.
The Java programming language is popular in large part
because it can run on many different computers. This is
achieved via an emulator (a “virtual machine”) that allows
Java programs to be executed on different platforms.

Emulators are particularly satisfying to write. Building an
emulator is challenging, since it requires an intimate under-
standing of both the emulated machine and the host machine
in order to bridge them together. Emulators are hard to get
right since they require extensive attention to detail: every
single facility of the emulated environment, whether it’s a
CPU instruction or interactions between two components,
must work as per spec, or the program running on the emula-
tor will likely fail. Once an emulator is completed, it’s possible
to revive old programs in such a way that they’re completely
oblivious to their new surroundings. It’s almost like traveling
back in time.

Emulation in Java
Java has matured tremendously in the years since I first

came into contact with it. Since writing emulators has been an
on-and-off hobby of mine, I thought it would be an interest-
ing experiment to see what it would take to implement one in
Java.

The first two challenges I had to think about before start-
ing down this path were performance and timing.
Performance is critical to the success of an emulator since
no matter how accurate, if an emulator runs programs sig-
nificantly slower than the original hardware, no one would
want to use it. The Java HotSpot engine has recently
advanced the performance of Java programs by leaps and
bounds, yet the risk still remains: for every instruction of an
original program, the emulator may have to execute tens or
hundreds of instructions. Timing is also critical since Java
does not (yet) have facilities for running programs in real
time. Most notably, garbage collection may well interfere
with the proper execution of the emulated program and
cause significant pauses, making the programs appear jerky
onscreen.

On the flip side, Java provides an excellent environment for
writing code since it has a powerful and expressive API. The
emulator I’ll be describing is loosely based on an open-source
emulator (implemented in C) that I worked on with a few
other people a number of years ago. The Java source is an
order of magnitude more compact and more elegant than the
original C source. The Java AWT API significantly reduced the
burden of implementing the screen emulation (one of the
harder aspects of the original emulator). Last, but not least,
the emulator can run on any Java Virtual Machine.

Java COM

52 JULY 2002 53JULY 2002

Java COM

The Sinclair ZX Spectrum
The machine I wrote the emulator for is the Sinclair ZX

Spectrum: one of the first personal computers. For a bit of his-
tory on the machines and the man behind them, visit
www.nvg.ntnu.no/sinclair/.

The Java emulator, called “JZX”, is loosely based on a Linux
native emulator called “XZX” that I worked on a number of
years ago (www.zx-spectrum.net/xzx/).

The Spectrum is a remarkably simple machine by today’s
standards.
• CPU (Z80 @ 3.5MHz), I/O controller (ULA)
• 16K ROM (BASIC), 48K RAM
• Integrated keyboard, TV decoder, loudspeaker
• IN/OUT ports (microphone and headphone), expansion

slot

Despite its simplicity, the Spectrum was fully capable of
running sophisticated software such as games, Pascal and C
compilers, databases, and word processors.

Architecture Overview
The Spectrum is assembled as in Figure 1 and operates as

follows:
• The CPU fetches instructions and executes them.

–It passes I/O instructions to the ULA.
–It handles interrupts from the ULA via interrupt routines.

• The ULA handles the interaction with the outside.
–It scans the video RAM to produce the TV frame.
–It interrupts the CPU at the end of a TV frame.
–It decodes the I/O ports to read/write the peripherals.

The software architecture resembles Figure 1, but is differ-
ent in a few key aspects (see Figure 2).

The emulator emulates two distinct machines: the original
48K Spectrum model and the subsequent 128K one. Since the
machines are similar, 95% of the emulator code base is shared.

Not all peripherals from the original Spectrum are emulated:
the I/O ports and the speaker are missing. The I/O ports are
not present since the original hardware needed them for load-
ing and saving software onto magnetic tape, while the emula-
tor uses files instead. The speaker is not present since it would
be almost impossible to emulate it correctly in Java: the sound
in the original Spectrum was produced by turning the speak-
er on and off rapidly to create the appropriate frequency.

Every Java class that represents a Spectrum component is
derived from BaseComponent (see Listing 1). BaseComponent
and BaseSpectrum form a (extended) Composite pattern,
where BaseSpectrum is the Composite and every
BaseComponent has a reference to its parent. Any
BaseComponent can access its parent and from there, any

other sibling. This simulates the “bus” of the original machine.
For example, whenever a byte is written into the video RAM,
the BaseMemory object can retrieve its BaseSpectrum parent
from which it can retrieve the appropriate BaseScreen object
and subsequently update the current screen frame.

The BaseComponent class also imposes the contract for
the major “lifetime events” of the emulator: startup, reset,
shutdown, and load.
• init(): Initializes the component with the parent and the

logger object (used for logging error and debug messages)
• terminate(): Terminates the component and indicates that

all its state should be discarded
• reset(): Notifies the component to reset all of its state and be

ready to start fresh
• load(): Participates with BaseLoader in a simplified Visitor

pattern used for loading relevant state into the object (the
Accept() and Operation() methods are merged into load()
since the Visitor is merely a passive data container)

When the top-level BaseSpectrum object is created, it calls
init() on itself and all its children, followed by reset(). When
the emulator is shut down, it calls terminate() in the same
way.

Emulation Challenges
Main Loop

The main loop of the emulator resides in the
BaseSpectrum class (see Listing 2).

Every instruction executed by the Z80 CPU takes a certain
amount of time, which is a multiple of one “state” (also known as
“T-state”). The ULA renders one line of the screen every 224 CPU
states (STATES-PER-LINE), so it’s essential to keep track of how
many states pass every time the CPU decodes and executes one
instruction. For efficiency purposes, the screen is not updated
every time a new line becomes available, but rather every 50 (TV-
LINES) lines, which means one frame every 20 milliseconds.

The CPU interrupts are simulated by means of wait()ing on
an external Thread object, which simply sets a public field to
“true” and calls notifyAll() every 20ms, at which point the
main emulator loop notifies the CPU of the interrupt. The rea-
son for wait()ing on the interrupt is that the CPU emulation
runs at the speed of the host machine; no attempt is made to
slow it down in order to run at the original Spectrum speed,
except whenever a screen frame is rendered. This turns out to
be entirely appropriate and makes the emulation both fast
and believable. Note that it’s possible for the main emulation
loop to “skip” one interrupt (if, for example, refreshing the
screen takes too long). This is a measurably low risk that
would take place only on slower machines and would not be
readily visible.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Building an eemmuullaattoorr iiss cchhaalllleennggiinngg,,
since it requires an intimate understanding

of both the emulated machine and the host
machine in order to bridge them together”

“
Dice

www.dice.com

Java COM

54 JULY 2002 55JULY 2002

Java COM

Memory Emulation
The Z80 is a 16-bit CPU, meaning it can index up to 64K of

memory. This works naturally for the 48K Spectrum (16K ROM
and 48K RAM.) The 128K Spectrum, on the other hand, has
12x16K pages (4xROM + 8xRAM); the software can select any
four to be “seen” by the CPU. The BaseMemory implementa-
tion uses pages for the emulation in both models to achieve
maximum reuse.

The BaseMemory object keeps track of two arrays to repre-
sent the memory:

byte[][] m_page;

byte[][] m_frame;

• The “m_page” array represents the full set of memory pages.
There are 12 pages, each 16K long.

• The “m_frame” array represents the four pages currently
being “seen” by the CPU. For example, the following code
makes the CPU “see” pages 0, 4, 6, and 9:

m_frame[0] = m_page[0];

m_frame[1] = m_page[4];

m_frame[2] = m_page[6];

m_frame[3] = m_page[9];

The emulated CPU reads and writes data by indexing into
the “m_frame” array.

The BaseMemory object allows the CPU to select the “visible”
pages via the method “public void pageIn(int frame, int page)”. It
also allows direct access to the page data via “public byte[]
getBytes(int page)” (useful for the screen emulation, for instance).

All memory operations must convert “virtual” addresses to
physical ones. The frame number is simply the first 2 bits of
the “virtual” address; the frame offset is the remaining 14 bits
(see Listing 3).

Signed and Unsigned Data Types
You may be wondering about the return types of the meth-

odes in Listing 3; they both return an integer (32 bits) despite
the fact that they should perhaps return a “byte” (8 bits) and,
respectively, a “char” (16 bits).

The Z80 CPU can operate on 8-bit or 16-bit values, either
directly or via its registers. Although Java natively supports
data types that are 8- and 16-bits wide, the emulator is imple-
mented almost exclusively in terms of integer types. The rea-
son for this is that the Java byte is a signed type, while the Java
char is an unsigned type.

Consider the following (fictitious) Z80 instruction that
adds the contents of the A register (8 bits) to the contents of
the HL register (16 bits) and stores the results in the HL regis-
ter:

Input:

A = 10000000 (=0x80), HL = 00000000 00000001 (=0x0001)

Result HL = HL + A:

HL = 00000000 10000001 (=0x0081)

The same thing in Java would look like this:

Input:

byte a = (byte) 0x80; char b = (char) 0x0001;

Result b = b + a:

b = (char) (b + a); (=0xFF81)

Surprised? The Java language specification (paragraph
5.6.2) mandates that all binary operations where the operands
are of type integer (or smaller) should be promoted to integer
first. In our case, the (byte) value 0x80 and the (char) value
0x0001 are first promoted to integer before they’re added.
Since the byte is a signed type, the integer promotion yields
the value 0xFFFFFF80. Since the char is an unsigned type, the
integer promotion yields the value 0x00000001. When the two
integer values are added, the end result is 0xFFFFFF81, which
is then truncated to a char, yielding the value 0xFF81. The only
way to avoid this behavior is to explicitly prevent the sign
extension in the widening conversion. The new code would
look something like this:

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

Performance is critical to the

ssuucccceessss ooff aann eemmuullaattoorr since no matter how

accurate, if an emulator runs programs significantly slower than

the original hardware, no one would want to use it”

“

FIGURE 1 The Spectrum

eNGENUITY
Technologies

www.jloox.com

b = (char) (b + (a & 0xFF));

The “&” will mask all bits but the last 8, yielding (the inte-
ger) 0x80, which is then added to “b”, producing the correct
result.

Although this solution solves the problem, it’s only a par-
tial solution for the CPU emulation as a whole. The reason has
to do with the CPU flags that indicate whether overflow
occurred during a particular operation. Java has no mecha-
nism for indicating overflow, so I must always use a Java data

type that’s larger than the resulting value. The emulator would
explicitly test for overflow and truncate appropriately. In the
end, the only feasible solution is to use integer types every-
where, and explicitly deal with issues of truncation and over-
flow.

To keep the code readable, I adopted a naming convention
that exposes the size of the data types involved. The size in bits
of the return value and each argument of a function is
appended to its name. For example, “int read8(int val16)”
means that the function returns 8 bits of data, and receives as
an argument 16 bits of data, all embedded in an integer as the
less significant bits. Furthermore, the convention is that all

input arguments are correct and need no further modifica-
tions, while all return values need to be correctly truncated
before being returned.

CPU Emulation
In addition to the signed/unsigned challenges described

earlier, the CPU poses additional problems in the area of
instruction decoding. The decoder is implemented as a large
“switch()” statement, which switches on the first byte of the
current instruction. Naturally, the code is very large and rather

unwieldy to read and modify. One possible solution for deal-
ing with such a large piece of contiguous code would be to
have an array of IRunnable objects (that can decode a partic-
ular instruction in the “run()” method) indexed on the
instruction code.

This approach would allow the code to be structured
more elegantly, but it would proliferate the number of
classes and impose significant runtime overhead. The
“switch()” approach, while difficult to write and maintain,
is extremely fast since the JVM implements it internally as a
jump table, thereby exhibiting the same architectural
approach as the object array, without the performance
penalty of invoking an interface method for every instruc-
tion.

Screen Emulation
Each pixel on the Spectrum screen can be either on or off.

This is represented by the appropriate bit value in a byte (the
state of 8 adjacent pixels is governed by the byte value at a par-
ticular memory address in video RAM). Color information is
represented by another byte.

To draw pixels on the screen, the BaseScreen object
extends java.awt.Canvas and implements the drawing
logic in the paint() method. A nice side effect of this is that
the emulator can be “embedded” into any AWT or Swing
container that can render Canvas objects. This allows the
emulator to run seamlessly as a standard application or
an applet. The BaseScreen object uses an offscreen image
to render the screen contents, after which the image is
drawn directly onto the screen via java.awt.Graphics.-
drawImage() (this common technique prevents flicker-
ing).

Every time the CPU writes into the screen memory area,
the BaseScreen object is notified. For maximum efficiency, the
only action taken at this time is to toggle a Boolean value in an
array that indicates that the particular screen byte has
changed. When paint() is called, a for loop iterates through the
Boolean array and, for every “true” value, it draws the corre-
sponding byte into the offscreen image.

The mechanism for fast updates to the offscreen image is
the challenging part. The naïve technique is simply to use
java.awt.Graphics.fillRect() to render every pixel into the

Java COM

56 JULY 2002 57JULY 2002

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

I was pleasantly surprised to see that it was not only
possible to implement a JJaavvaa eemmuullaattoorr

for the Spectrum,
but that it also ran fast”

“

FIGURE 2 Software architecture

InstallShield
Software
www.installshield.com

Java COM

59JULY 2002

Java COM

58 JULY 2002

J2
SE

H
om

e
J2

E
E

J2
M

E
image. While this works, it’s very slow due to the overhead of
calling the fillRect() method and running it many times for 1x1
rectangles.

A better technique is to create the offscreen image as a dec-
orator for a java.awt.image.MemoryImageSource object. The
MemoryImageSource is created, in turn, containing a byte
array in RGB format with the pixel data. The rendering code
updates the byte array and then calls MemoryImage-
Source.newPixels() to notify the object that the data has been
updated (see Listing 4).

Table 1 provides the timing results, in milliseconds, for
rendering 200 consecutive frames of the (same) Spectrum
game (the hardware/software configuration is Windows 2000
Professional, Pentium III 650, 192MB RAM).

These timings are barely adequate: as you recall, each
Spectrum frame is refreshed every 20ms. If rendering the
frame takes longer than 20ms, the emulation will look
choppy (it will skip frames and slow down the machine
overall).

To improve performance, I made a key observation
about the way color is encoded in the Spectrum. As
described earlier, every byte in video RAM is paired with
another byte that describes its color: the first byte simply
shows whether the pixels are “on” or “off” (the “pixel” byte)
and the second byte shows what color the pixels are (the
“color” byte). This means there are a total of 256 * 256 dif-
ferent ways that a location in video RAM could appear on
the emulated screen (256 values for the “pixel” byte and 256
values for the “color” byte). I can prerender some (fixed)
number of these “pixel/color” byte combinations as Java
image objects and then simply use java.awt.Graphics

.drawImage() to render that piece of the video RAM on the
screen (see Figure 3.)

The new performance numbers are in Table 2.
As you can see, the performance improvements are dra-

matic for Java1 (>90%); for Java2, however, the performance
is far worse (a slowdown or more than 1,000%!). The reason
for the bad Java2 performance lies in the performance of
java.awt.Graphics.drawImage(). This discussion is beyond
the scope of this article, but you can read more about it on
the Java Developer Connection Web site (http://
developer.java.sun.com/developer/) in the BugParade sec-
tion (http://developer.java.sun.com/developer/bugParade/
bugs/4276423.html).

To resolve the performance problems in Java2, I use a
different (and more conventional) technique that’s similar
to the MemoryImageSource technique described earlier. In
Java2, the offscreen image object is a superclass of
java.awt.Image, namely a java.awt.image.BufferedImage.
This class has a method called setRGB() that allows you to
set an RGB pixel array directly into the Image object, with-
out the performance penalties of MemoryImageSource.
newPixels().

The final performance numbers are in Table 3.
Note that prerendering all possible 256 * 256 (= 65536) Java

image objects will take a toll on the memory footprint of the
emulator. If I want a fixed-size cache of these images, I run the
risk of “thrashing” in the cache. Discarding entries when the
cache is full means the garbage collection will have more
work, slowing down the emulation. It’s possible to reuse
entries in the cache (instead of discarding them), but this will
bring us back to the original performance problems with

Java COM

TECHNIQUE SUN JAVA 1.1.8_03 MICROSOFT JVIEW 5.00.3802 SUN JAVA 1.3.1
MemoryImageSource 23.93526824 24.0485756 20.20600913

TABLE 1: Timing results

TECHNIQUE SUN JAVA 1.1.8_03 MICROSOFT JVIEW 5.00.3802 SUN JAVA 1.3.1
MemoryImageSource 23.93526824 24.0485756 20.20600913
Prerendered Java 0.989330465 0.939373495 N/A
Images

TABLE 2: New performance numbers

TECHNIQUE SUN JAVA 1.1.8_03 MICROSOFT JVIEW 5.00.3802 SUN JAVA 1.3.1
MemoryImageSource 23.93526824 24.0485756 20.20600913
Prerendered Java 0.989330465 0.939373495 N/A
Images
BufferedImage N/A N/A 5.995489495

TABLE 3: Final performance numbers

FIGURE 3 Prerendered Java image

Borland
www.borland.com/new/jb7/5068.html

Java COM

61JULY 2002

Java COM

60 JULY 2002

razvan.surdulescu@post.harvard.edu

Java COM

Graphics.drawRect() or MemoryImageSource.newPixels(). A
better idea is to use only half the “pixel” byte (a nibble) to pre-
render Java images. This means that any “pixel” byte will be
drawn by concatenating two prerendered Java images. The
total number of prerendered nibbles is far more manageable:
16 * 256 (=4096.) The tradeoff is that I now need to make twice
as many calls to java.awt.Graphics.drawImage(), but that turns
out to be inconsequential.

Debugging Techniques
Debugging the emulator is very challenging. The hardest

part to debug is the CPU emulation, primarily due to its
sheer size and complexity. The CPU emulation code is bigger
and more complicated than the rest of the emulator.
Although the Z80 CPU is simple by today’s standards, it has a
great many flags, registers, and instructions that manipulate
these flags. For example, any addition will modify the sign
flag, parity flag, carry flag, half-carry flag, and add-subtract
flag. The Spectrum software uses all these flags, and any mis-
take most often translates into a “hard reset” of the emulated
Spectrum.

Furthermore, determining exactly where the emulated
software crashed is not as easy as watching for the equiva-
lent of an illegal memory access or page fault. (There’s no
such thing on the Spectrum.) An incorrectly decoded
instruction will most often translate to a Spectrum “hard
reset” or “hang” thousands of instructions down the stream
from it.

The easiest way to debug the emulator is to use another
emulator (that’s known to be correct) and compare the CPU
traces for executing the same program. In this case, I modified
the original Linux native emulator to output CPU traces (a
CPU trace is the state of all registers and flags after executing
every instruction). This has the advantage of pinpointing the
precise spot where the Java emulator diverges from the native
emulator and thus dramatically reduces the time required for
debugging.

Performance Considerations
I was pleasantly surprised to see that it was not only possi-

ble to implement a Java emulator for the Spectrum, but that it
also ran fast. The CPU emulation is on par with the native
emulation; the screen emulation, while slightly slower and a
bit more awkward, is well within the limits of realistic emula-
tion for what I would consider “average” hardware.
Surprisingly, and most probably due to screen emulation,
Java2 didn’t fare dramatically better than Java1, which puts
Java1 on the map as a reasonable contender for this type of
work.

Conclusion
As a platform for emulation, Java is a very strong player.

Although the Sinclair Spectrum is not a terribly complex
machine by today’s standards, it poses significant challenges
in its implementation, and requires strong support both in
terms of language features and overall performance. Java’s ele-
gant and expressive language rises to the challenge and over-
comes it easily with code that’s more readable, more modular,
and far more concise. Java’s performance, the wild card in the
equation, also meets expectations.

AUTHOR BIO
Razvan Surdulescu is a software developer at Trilogy in Austin,TX, where he writes e-business
software in Java.

J2
SE

H
om

e
J2

E
E

J2
M

E

public abstract class BaseComponent
{
protected BaseSpectrum m_spectrum;

public BaseSpectrum getSpectrum() {
return m_spectrum;

}

public void init(BaseSpectrum spectrum) {
m_spectrum = spectrum;

}

public void terminate() {
m_spectrum = null;

}

public abstract void reset();

public abstract void load(BaseLoader loader);
}

while (true) {
states = current CPU state count
if (states >= STATES-PER-LINE) {
states = (states - STATES-PER-LINE)

increment line count
if (lines == TV-LINES) {
lines = 0
refresh screen

wait for the next clock interrupt
interrupt the CPU

}
}

execute next CPU instruction
}

public int read8(int addr16) {
int data = m_frame[(addr16 >> 14)][(addr16 & 0x3FFF)];
return (data & 0xff);

}

public int read16(int addr16) {
int high = (read8((addr16 + 1) & 0xFFFF) << 8);
int low = read8(addr16);
return (high | low);

}

private int[] m_data;
private MemoryImageSource m_memoryImageSource;

// RGB data
m_data = new int[SCREEN_WIDTH * SCREEN_HEIGHT];
m_memoryImageSource = new MemoryImageSource(SCREEN_WIDTH,
SCREEN_HEIGHT, m_data, 0, SCREEN_WIDTH);
m_memoryImageSource.setAnimated(true);

public void paint(Graphics g) {
for every ‘address’ in Video RAM {
let ‘pixels’ be the byte at that address
for every ‘bit’ in ‘pixels’ {
let ‘(x, y)’ be the Cartesian coordinates of ‘bit’
let ‘color’ be the RGB color of ‘bit’
m_data[‘(x, y)’] = ‘color’

}
}

m_memoryImageSource.newPixels();
g.drawImage(m_offscreenImage, 0, 0, this);
}

Listing 4

Listing 3

Listing 2

Listing 1

Interland
www.interland.com

62 JULY 2002 63JULY 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

Books and Chewing Gum
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J

2M
E

J 2 M E I N D E X

Arecent press release from Palm got
me thinking about their PDAs, as
well as why Palm (in the UK) never

returned my e-mails...but that’s another mat-
ter (and half a world away now). In any case,
according to the release, 5,000 Palms are to
be purchased as part of a three-year grant
program for several New York State school
associations. Apart from wishing I was the
salesperson who got the commission on that
particular contract, I wonder whether Java is
in the equation for any application suites
being developed (if they are) as part of that
system roll out. And if not, why not?

If Java is not being considered, a col-
league of mine thought of a reason. Polish.
No, not people from Poland – the other
meaning/pronunciation (i.e., to remove
flaws from; to perfect or complete). To para-
phrase his words – the JVM for the Palm suf-
fers from a certain lack of polish compared
to other applications available for the OS.

Personally, I think the Palm JVM has
really improved since I first looked at it,
and it’s definitely better than VMs I’ve seen
running on Windows CE, in terms of inte-
gration with the device, for example.

Java has a history of this “lack of polish” on
the client side. Compare the hiccup that is an
applet starting up in your browser with the
smoothness of Macromedia’s Flash and you’ll
know what I mean. However, in comparison
with desktop Java, I don’t think the Palm VM is
really that bad, so I hope that whoever is
advising the associations is giving the idea
some serious thought.

One of the killer applications for the
Palm seems to be electronic books.
Considering the price of a number of eBook
“readers” I’ve seen, PDAs, like the Palm, are
a cost-effective alternative – so it’s hardly
surprising that eBooks are doing relatively
well. However, the major problem I see with
the whole concept of downloading books is
that I quite like wandering down to a book-
store, picking a title off the shelf, and read-
ing a few pages to see if I like it. Not that I

don’t also like browsing online, but the tra-
ditional retail book-buying experience defi-
nitely still has its allure. I’m not sure if I’m
exactly representative of society as a whole,
but I guess there’s a good percentage of peo-
ple out there who feel the same.

Stick with me here – I’m going off on a
tangent.

I recently read on CNET that Sony is
endeavoring to make their memory stick a de
facto standard. I’m sure you’ve come across
these odd little storage cards before, but in
case you haven’t – imagine a stick of Wrigley’s
chewing gum and you’re halfway there.
Whether or not they succeed in becoming
the market standard, I have to say I quite like
the memory stick. They seem a lot more con-
venient to lug around in larger numbers (and
how is that pickpocket supposed to know
that the pack of chewing gum in my pocket
isn’t actually chewing gum...unless of course
they like chewing gum...?).

So here’s the crazy idea for the month.
The old “walk-in-and-browse” bookshops
remain the way they are, but with a slight
difference. Rather than stocking books,
they stock something like a pamphlet – a
standard book jacket (with cover and sum-
mary on the back) plus a few excerpted
pages inside. It would work in a similar
fashion to the way music stores do now –
you take the cover up to the counter and
they pull a CD out of a cupboard – except
in this case, they pull a memory stick out of
the cupboard with the book loaded on it.
Those who want to browse in a shop can
still do so – those who want to browse
online can still do their purchasing on the
Net. People like me, who enjoy doing both,
are happy as well. And the humble PDA
(Palms, Handsprings, Cliés, and the like)
will make an admirable reader until the
various companies inventing electronic
paper (or whatever they’re calling it) bring
the technology to market.

Now to make sure that the infrastruc-
ture for all this is implemented in Java…

AUTHOR BIO
Jason R. Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years, “unofficially for five.”

Java COM

70

62

64

66

Java COM

Books and Chewing Gum
According to a Palm press

release,5,000 Palms are to be pur-
chased as part of a three-year grant
program for several New York State

school associations. I wonder
whether Java is in the equation for
any application suites being devel-

oped (if they are) as part of that sys-
tem roll out.And if not,why not?

by Jason R. Briggs

A Smart Card’s Place in a
Security Architecture
A smart card is, in essence, a
computer that can be carried

around in your back pocket.“But
what does it do?” you might ask.As

with most computers, the answer
to this question is,“What do you

want it to do?”
by Ken Greenwood

Java Card 2.2
Specifications Overview
Ever since the Java Card 1.0

was introduced in 1996 it has
been gradually maturing and

recently celebrated its fifth
anniversary. American Express,

Visa, and now the Department of
Defense have all deployed solu-

tions that utilize the Java Card
specifications. This rather large

movement proves that Java
Card technology is a great sys-
tem for data security and data

mobility.
by Joseph Smith

Optimizing Java
Performance in Heritage

Designs
It’s become clear that the

potential marketplace for embedded
Java devices is vast, but that some

of these markets are not yet mature.
This article discusses the introduc-

tion of Java into multilanguage her-
itage designs, focusing on the

advantages and disadvantages of
deploying each solution.

by Carl Barratt

QUALCOMM Inc
http://brew.qualcomm.com/ZJD4

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

CHIEF OPERATING OFFICER
MARK HARABEDIAN mark@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

NANCY VALENTINE nancy@sys-con.com
EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ASSISTANT EDITOR
JENNIFER STILLEY jennifier@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

LEAD DESIGNER
LOUIS F. CUFFARI louis@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

ASSISTANT ART DIRECTOR
TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com
CATALIN STANCESCU catalin@sys-con.com

A C C O U N T I N G
CHIEF FINANCIAL OFFICER

BRUCE KANNER bruce@sys-con.com
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE

JAN BRAIDECH jan@sys-con.com
ACCOUNTS PAYABLE

JOAN LAROSE joan@sys-con.com
ACCOUNTING CLERK

BETTY WHITE betty@sys-con.com
S Y S - C O N E V E N T S

VICE PRESIDENT, SYS-CON EVENTS
CATHY WALTERS cathyw@sys-con.com

CONFERENCE MANAGER
MICHAEL LYNCH mike@sys-con.com

SALES EXECUTIVES, EXHIBITS
MICHAEL PESICK michael@sys-con.com

RICHARD ANDERSON richard@sys-con.com
C U S T O M E R R E L A T I O N S / J D J S T O R E

MANAGER, CUSTOMER RELATIONS/JDJ STORE
ANTHONY D. SPITZER tony@sys-con.com

CUSTOMER SERVICE REPRESENTATIVE
MARGIE DOWNS margie@sys-con.com

65JULY 2002

Java COMJava COM

64 JULY 2002

I N D U S T R Y C O M M E N T A R Y

At the recent JavaOne conference in
San Francisco, SchlumbergerSema
demonstrated the benefits of a

Java-based smart card. “A Java what?” was a
common response by visitors. A brief
explanation showed that anyone with a
GSM mobile phone, and many with a cred-
it card, carry one of these around all the
time. In an age when processor speeds are
measured in gigahertz, it’s often difficult to
think on a slightly smaller scale.

A smart card is, in essence, a computer
that can be carried around in your pocket. It
has input/output and power – via a set of
metallic contacts – a microprocessor (32
bits will soon be common), ROM, EEPROM
(64K in recent models), and an operating
system (OS). For a Java-based card the OS,
as defined by Java Card 2.1 standards, is a
slimmed-down version of the OS found on
a larger computer. The flexibility, security,
ease-of-use, and rapid development cycle
of Java technology has made it the leading
open standard for the smart card industry.

“But what does it do?” you might ask. As
with most computers, the answer to this
question is, “What do you want it to do?”
Smart cards have been in use for over 20 years,
although only fairly recently have they been
able to run an actual operating system.
Because smart cards are embedded with a
microprocessor, they can store large amounts
of data and carry out their own card func-
tions, such as encryption of digital signatures.

A smart card communicates with a host
computer through a card reader, which can
generally be connected to a USB, RS232, or
PCMCIA port.

Although widely used in GSM mobile
phones, the Java Card is a relative newcom-
er to the network security field. Despite the
many advantages of smart card technology,
the cost of the reader has been a restraining
factor. There are significant advantages,
however, and with the cost of readers going
down and the introduction of direct-to-
USB port technology, the strong value of
smart cards as an easy-to-use, portable,
and very secure means of logical identifica-
tion is beginning to be better understood
by those outside the immediate industry.
With the need for security – both physical
and network – becoming ever more critical,
it’s clear that a portable device with a
secure memory is a good investment.

Recent laws in many countries have
made electronic signatures a reality and

Public Key Infrastructures (PKIs) are
becoming more common. They rely on a
pair of secure keys that make up a person’s
digital identity. One of these keys is the
“public key,” which can be seen and used
by anyone to check the authenticity of a
document signed using the corresponding
“private key.” As the name suggests, the pri-
vate key must be kept secret at all times. A
smart card offers the ability to securely cre-
ate the two keys onboard the card itself,
ensuring that the private key is never visi-
ble to the outside world. The use of this key
to sign or decrypt a message is, again,
always done on the card.

While it’s possible to do these opera-
tions using a computer’s hard drive, there
are too many worms and viruses to make
this a secure alternative. In addition, the
common practice of writing down pass-
words or making them easy to remember is
a serious flaw in any security architecture.
By using a well-defined structure and com-
munication within the card, it’s possible to
make certain that there’s no access to the
secret memory without the correct author-
ization. A multifactor authentication
ensures that, to use the card (and therefore
the private key), it’s necessary to have the
card with you and know the password. A
third factor can even allow authentication
using a biometric application, such as a
fingerprint or face recognition.

Futurists once predicted we would
carry computers in our pockets – with
smart cards, we already do. Security has
become paramount in the global con-
sciousness, and Java-based smart cards
offer a secure, mobile, practical, and
affordable means of providing physical and
information security.

More information about smart cards can be
found at www.smartcards.net.

References
• Smart Card Developer's Kit: www.

scdk.com.
• Guthery, S. and Cronin, M. (2001).

Mobile Application Development with
SMS and the SIM Toolkit. McGraw-Hill.

• Anderson, R.J. (2001). Security Engine-
ering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons.

AUTHOR BIO
Ken Greenwood is the business marketing manager for
SchlumbergerSema Cards and Transactions.

H
om

e
J2

E
E

J2
SE

J2
M

E

kgreenwood@slb.com

A Smart Card’s Place in a Security Architecture
WRITTEN BY KEN GREENWOOD

Sprint PCS
http://developer.sprintpcs.com

67JULY 2002

Java COMJava COM

66 JULY 2002

Java Card 2.2 Specifications Overview

D A T A S E C U R I T Y & M O B I L I T Y

This rather large movement proves
that Java Card technology is a great sys-
tem for data security and data mobility.
At last count, American Express claimed
over 4 million deployed cards and Visa
estimated over 7 million at the end of
last year.

Since September 11, 2001, there has
been a lot of interest regarding Java-
based smart cards combined with bio-
metrics (verifying the identity of a per-
son through some physical characteris-
tic). This has driven the Java Card speci-
fications to the forefront, and more and
more engineers (and managers) are
scrambling to implement them.

Currently, Java Card implementers
use Java Card 2.1.x. Soon you’ll be seeing
Java Card 2.2 deployed into the market-
place. Those who have started to use the
Java Card 2.1.x API are realizing that it’s
quite a hassle to do some basic things.
For example, you can’t utilize strings or
other common primitive types found in
Java because the Java Card processor
has extremely limited resources. Most
cards offer a little less than 32K of mem-
ory for applets. (Note: Don’t confuse

applets with J2SE applets. Applets refer
to applications that reside on the Java
Card.) Another deterrent is that you
have to deal with bytes! When was the
last time you had to think in bytes and
byte arrays?

Java vs Java Card
The Java Card contains a virtual

machine that’s tailored for it, the Java
Card VM. Because of the limitations, the
JCVM has some unsupported features
such as:
• Dynamic class loading
• Garbage collection
• Threads
• Cloning
• Default visibility override
• Package visible interface can’t be

extended to public visibility
• Int, double, float, and long are not

supported
• Static instantiated classes aren’t

allowed

The JCVM differs from standard
JVMs in several ways:
• There’s only one system class, the

javacard.framework.JCSystem.
• Persistence and transience behavior

are different from Java.
• Only single-dimensional arrays are

allowed.
• Security management policy is

implied in the JCVM and not an
explicit class.

• The JCVM is a 16-bit system.

With that said, there are some useful
supported features such as:
• Packages
• Virtual methods
• Interfaces, abstract classes, and

exception handling
• Polymorphism
• The root class is of class Object

Other limitations that should be
mentioned include:
• A maximum of 256 instance fields per

class
• Array size is limited to 32K
• Memory space is limited to 32K per

package

To communicate with a card, use a
Card Acceptance Device (CAD). This is
usually a card reader but can also refer
to an ATM or point-of-sale terminal.
Your communication isn’t really to the
card itself – it’s actually to the CAD,
which then sends commands to your
applet.

To make engineering more complex,
the structure of the applet code appears
a bit backward: you use a large switch
case block to process the commands
you want. However, Java Card 2.2 makes
all this a bit easier.

WRITTEN BY
JOSEPH SMITH

Ever since the Java Card 1.0 was introduced in 1996 it has
been gradually maturing, and recently celebrated its fifth anniver-
sary.American Express,Visa, and now the Department of Defense
have all deployed solutions that utilize the Java Card specifications.

Java Card engineering with RMI specifications

H
om

e
J2

E
E

J2
SE

J2
M

E

With the new Java Card
specification, existing

features become
more powerful

“
”

Motorola
www.motorola.com/developers/wireless

69JULY 2002

Java COMJava COM

68 JULY 2002

D A T A S E C U R I T Y & M O B I L I T Y

Java Card Remote Method Invocation
One thing that will make engi-

neering easier is the use of Remote
Method Invocation. An engineer
will no longer have to spend a lot of
time learning various APDU com-
mands.

Currently, you have to issue com-
mands in the following format:

CLA INS P1 P2 LC CData

• CLA: A class byte that can be an ISO
7816-4 such as 80, 84, or user-
defined

• INS: An instruction byte that states
which instruction to perform

• P1/P2: Parameter 1/2 that subdivides
a command

• LC: Length of data to be transmit-
ted

• CDATA: The data to be transmitted
• LE: Length of data to be returned

from the applet

Depending on the applet, it would
have to switch case on each individual
CLA, INS, and P1/P2 to process the nec-
essary command. This method of trans-
mitting data can be a tedious job and a
maintenance nightmare. The Java Card
RMI makes it easier to perform a com-
mand.

More Algorithms
For the implementation of security

algorithms we must rely on the individ-
ual vendors. Some vendors implement
cards that contain just DES and Triple
DES, while others implement DES,
Triple DES, and RSA. For the implemen-
tation of RSA it’s common to also
include a crypto-coprocessor in the
smart card chip to help speed up the
calculations.

In Java Card 2.2, AES and elliptic
curves are added. New key lengths are
also available with these new algo-
rithms. Of course, this can be a
headache involving export restrictions,
so check with your vendor to see what’s
actually implemented and what key
lengths they support.

You can still perform digital signa-
ture and random number generation on
the card as you did with Java Card 2.1.x.

Applet/Package Deletion
Applet/package deletion has been a

hot topic since the first release of the
Java Card. This feature of 2.2 will be up
to individual vendors to support, utiliz-
ing their own implementation. But
nonetheless, it’s sure to be available
since engineers and others will be
requesting the functionality. Applets
created using the Applet.register()

methods exist until deleted by
the applet deletion manager.
This manager can be an
applet provided by the vendor
and is selectable by providing
an application identifier, AID.
Sun wanted to leave the
implementation of the applet
deletion manager up to the
vendors and, because of that,
the AID won’t be standardized
but it must be SELECTable. As
long as the vendors provide a
SELECTable behavior to the
outside world, they can
implement the applet dele-
tion manager any way they
see fit for their Java Cards.

Memory Resource Management
The JCSystem class offers

two new methods: isGarbage-
CollectionSupported and re-
questGarbageCol lect ion.
These offer limited garbage
collection support to query if a
vendor has implemented
garbage collection functionali-
ty and to request that the
action be carried out. Garbage
collection isn’t a requirement,
and once again it’s up to the
implementers. However, you

can now query the amount of memory
available to the applet, which wasn’t avail-
able in 2.1.x.

JCSystem.getAvailableMemory is a
nicer way to query if memory is avail-
able before you allocate it. In 2.1.x, you
cross your fingers and hope that the
memory is available when you allocate
it, otherwise you’ll receive an excep-
tion.

Logical Channels
In Java Card 2.1.x your commands

are processed by the currently selected
applet. Java Card 2.2 allows up to four
sessions to be open, one session per
logical channel. Now applet instances
can be selected on different logical
channels. The applet can take advan-
tage of multisession functionality and
can be concurrently selected with
another applet on a different logical
channel. The applet can even be select-
ed multiple times. There is a basic logi-
cal channel, logical channel 0, that is
activated upon a card reset. A card reset
can occur when the card has been pow-
ered down via card removal or electrical
failure.

Applets that are capable of being
selected on multiple logical channels at
the same time are called multiselectable
applets. These will have the same securi-
ty constraints as in Java Card 2.1.x with
regard to active contexts. To forward
APDU commands to a logical channel,
the command will contain encoding in
the header CLA byte to denote which
channel. For example, CLA byte 0x02
could denote logical channel 2, and 0x00
could denote logical channel 0. The log-
ical channel is of key importance for
wireless support involving 3GPP, WAP,
and ETSI.

Conclusion
Java Card 2.2 includes support for

contactless smart cards. These cards
don’t have the visible chip on them, but
can be read if the card is simply waved
within a certain proximity of a contact-
less CAD. There has been movement to
include some form of biometry in the
Java Card API, and this technology will
no doubt be appearing on the market
soon.

With the new Java Card specification,
existing features, such as transaction
processing (much like commit/rollback
in a database), become more powerful.

Personally, I’m excited about the RMI
specification and memory management
features that will make complex Java
Card engineering a lot friendlier.

H
om

e
J2

E
E

J2
SE

J2
M

E

java_card@hotmail.com

Northwoods
Software

www.nwoods.com/go/

AUTHOR BIO
Joseph Smith is a

senior software
engineer with over

13 years of
experience. In the
last two years, his
area of expertise
has been in Java

Card and
biometric-based

solutions. He can
frequently be found
answering questions
on Sun’s Java Card
Developer Forum.

Actuate
Corporation

www.actuate.com/info/jdjad.asp

Java COM

70 JULY 2002 71JULY 2002

Java COM

ava, in its J2ME guise, has all the attributes
of a first-rate platform for embedded sys-
tem design. More specifically, its platform
independence, code portability, and
robust operation render it particularly
suited to such applications. The extensive
use of embedded Java-based devices in the
future is secure due to the proliferation of
standards based on it, and, moreover, the
endorsement of major OEMs committed
to its use in their designs.

It’s become clear that the potential
marketplace for embedded Java devices is

vast, but that some of these markets are not
yet mature. Successful manufacturers in the

immediate market for embedded devices,
such as wireless handsets and set-top boxes,

possess a huge investment in legacy code that they,
not unreasonably, wish to retain. Along with the problem

of generating acceptable performance in resource-con-
strained environments, the migration to Java-enabled
devices in markets that are already established and based on
other technologies is the most significant barrier to the
widespread adoption of Java as the de facto standard in the
embedded space.

Of the emerging solutions, both hardware- and software-
based, none can claim to be a panacea. This article discusses
the introduction of Java into multilanguage heritage designs,
focusing on the advantages and disadvantages of deploying
each solution.

Java Bytecode Execution in an Embedded Environment
Obviously, some platforms will be more proficient than

others at executing Java code. The issue is clouded by hype,
but, fundamentally, Java bytecode can be executed in one of
three ways: software translation, hardware translation, or
direct execution.

Translation in Software:The Java Virtual Machine
Bytecode can be executed using a software Java Virtual

Machine (JVM) or, more specifically, a KVM designed particu-
larly for embedded devices. Java code can be executed on any
such virtual machine. A JVM takes the precompiled Java
source code (bytecode) and translates it into the native
machine code of the processing platform in question preced-
ing its execution. Indeed, this process of interpretation is cen-
tral to the Java concept of platform independence.

Translation in Hardware: Bytecode Accelerators
A bytecode accelerator is a hardware solution that uses the

resources of an existing host processor. Accelerator solutions
don’t execute Java bytecode directly; instead, they convert the
bytecode (in hardware) into the native instructions of the host
processor prior to execution. Invariably, such solutions also
utilize a software-based JVM, modified by the replacement of
the main interpreter loop and execution unit with the byte-
code accelerator.

Native Java Processors
Native Java processors are microprocessors designed to

execute bytecode directly as their native instruction set. They

H
om

e
J2

E
E

J2
SE

J2
M

E

HiT Software
www.hitsw.com

Java COM

72 JULY 2002 73JULY 2002

Java COM

can be deployed as a coprocessor to a host processor in a mul-
tilingual, multiprocessor system, or as a standalone solution
in a dedicated embedded Java design.

Embedded Multiprocessor Java Solutions
While there’s a clear desire for Java capabilities to be intro-

duced into many embedded applications, it’s a prerequisite
that Java bytecode is executable in parallel with existing her-
itage code, rather than in place of it. Primary examples of such
applications would be a mobile phone running a C-coded
communications stack, or a set-top box currently evolving to
support interactive or Internet-based content. Understanding
the fundamental design issues is vital when designing high-
quality embedded devices for Java-based applications.
Characteristics that influence the selection of components for
any embedded system include:

• Resources
• Performance
• Ease of integration
• Cost

First, JVMs are inherently resource hungry. This is a corol-
lary of the software interpretation layer, which abstracts the
code, and the processor upon which that code is executed. A
JVM will typically map a single Java bytecode into several
native processor instructions prior to execution; therefore, to
sustain acceptable Java performance, a very fast processor is
required. Relatively speaking, the rise in silicon cost and
power consumption intrinsic in the use of such powerful
processors is huge. Additional memory resources, occupied by
the JVM itself, present a further burden for embedded appli-
cations.

Bytecode accelerators also use a JVM and so require the
same additional memory resources as software-only JVM
solutions. Typical bytecode accelerators are efficient in terms
of silicon cost when added to an existing host processor; how-
ever, if a second dedicated processor is used, the gate count of
this additional processor must also be taken into account.
Native Java processors vary drastically in size. Those that are
stack-based, and thus accurately match the Java execution
model, have a very low silicon cost, whereas those based on a
standard RISC processor are less than optimal.

Since there are still no dependable metrics available to
evaluate the performance of embedded Java solutions, code
execution speed remains an emotive issue. When applied pru-
dently, benchmarks are an invaluable asset. However, they’re
not the sole criteria for evaluation and must be regarded with
caution since ultimately the crucial point is how fast the plat-
form can execute the end application code. CaffeineMark fig-
ures are widely quoted but are not representative of real appli-
cations. It’s hoped that the imminent arrival of EEMBC indus-
try-standard benchmarks will clarify the issue as discussed in
my previous article “J2ME Benchmarking: A Review” (JDJ, Vol.
7, issue 1).

Generally speaking, solutions that rely on the translation of

the Java bytecode into one or more native instructions, by
either a hardware or software interpretation process, will exe-
cute code much more slowly than solutions that are able to
execute the bytecode directly. Native Java processors can exe-
cute bytecode directly for the vast majority of bytecode. More
complex instruction types can be microcoded (i.e., they follow
a number of internally coded steps), or else, when this is not
practical, a jump to a predefined software routine is invoked
(see Figure 1).

Register-rich hardware solutions (e.g., bytecode accelerators
or, similarly, those native processors based on RISC cores) will
suffer a further performance impact resulting from the need to
preserve the state of the registers during the frequent context
switches that are a feature of a threaded language like Java.

JVMs are available for most processors and are the most
expedient way to enable Java capability on an existing plat-

form. However, this approach is wholly inefficient and not in
any way aligned with the J2ME paradigm, as the performance
versus resources trade-off in this case is difficult to justify for
embedded devices. Bytecode accelerators are specifically
designed to operate juxtaposed with a host processor and are
relatively easy to integrate. Furthermore, they’re able to exe-
cute Java bytecode more rapidly than the pure software JVM
solutions they replace. However, this is still at the expense of a
reduction in the available bandwidth of the host processor for
other functions (e.g., communications for an interactive
application) as a result of the extra processing burden placed
on it.

Native Java processors can execute Java bytecode at opti-
mal speeds and do not place any extra burden on the host
processor if deployed as a coprocessor, since they can operate
concurrently. Taking everything into consideration, there’s a
clear migration path (probably time-line dependent) from
“easy-to-integrate” JVM solutions through bytecode accelera-
tors to the ultimate performance offered by native Java
processors.

How simple is it to integrate a native Java processor with an
existing host core? The answer, of course, depends on the
design of the processor. The final part of this article explains
such a design in more detail.

Finally, though licensing costs are somewhat tangential to
this discussion, they’re worth a mention since it’s an impor-
tant concern for devices that are produced in high volume.
While cost is very much a vendor-specific issue, it’s worth
pointing out that solutions that utilize both a JVM and hard-
ware intellectual property will incur license fees for both
resources.

Integrating a Native Java Processor into a Multiprocessor System
The integration of a Java processor as a loosely coupled

coprocessor can be simplified by the addition of a few extra
features, including:
• An industry-standard bus interface
• Relocation support for the core memory map
• Host processor communication support

H
om

e
J2

E
E

J2
SE

J2
M

E

nderstanding the fundamental
design issues is vital when designing
high-quality embedded devices for
Java-based applications”

“U

InetSoft
Corporation

www.inetsoft.com/jdj

Java COM

75JULY 2002

Java COM

Externally, the Java processor must present an industry-stan-
dard bus interface (e.g., AMBA, AHB, MLB) to simplify integration
of the processor with the host CPU (see Figure 2). In a coprocessor
scenario, both processors are declared bus masters. Since they’re
able to process data concurrently and are completely independent
of each other, conflicts may occur when both processors request
bus access simultaneously. Ultimately, in such circumstances, the
decision of which processor takes priority lies with the bus arbiter
and is defined by the systems integrator at design-time. Code
caches are an important feature of any coprocessor implementa-
tion. Their importance lies in the fact that not only do they reduce
code access times, but they also limit system bus access and so
reduce bus contention.

By default, and upon reset, a standalone processor would
sensibly execute code from the first location in memory.
However, in a multiprocessor system, it must be possible to
relocate the program counter to allow the host to redirect the
vectors for external instructions to an appropriate location in
the physical address map. This could be achieved, for example,
by reconfiguration of an index register.

Low-level support must also be provided for interprocessor
communications. In the example described here, this is

achieved using two mailbox registers: one for communication
from the Java processor to the host, the other for communica-
tion in the reverse direction. A command packet passed from
the sending processor to its mailbox then generates an inter-
rupt to inform the recipient processor that a new value has
been written. Subsequently, a further interrupt would be gen-
erated to inform the sending processor that the recipient has
read the value. It follows that the recipient processor is then
able to extract the format of the request by inspecting the mail-
box, which could be a method call, data transfer, or reference
to a multimedia object. Java coprocessor solutions that are
currently market-ready use one of two approaches to imple-
ment data transfer. This depends on whether the processor
requires dedicated memory resources or is able to support
shared access to system memory. Ideally, system memory can
double up as a communications area using an independent
memory location that’s accessible to both processors to trans-
fer data. Otherwise, where the processor does not support
shared memory, a FIFO buffer can be used to provide a data
transfer path, though this increases the complexity of the
design.

Ultimately, a J2ME application programmer shouldn’t
need to care about the hardware resources and, indeed, from
an abstract point of view, there will be little or no difference
between Java code developed for single or multiprocessor
solutions. As an example, let’s assume that the Java code wish-
es to make use of a set-top box resource supported by the host
processor, such as the tuner. This resource would be accessi-
ble only via a Tuning API, such as the one specified in the DVB
Multimedia Home Platform standards. In this scenario, a
standard Java method could trigger a request (passed via
mailbox registers) to the host, passing arguments to indicate
which channel is required. Once the operation had been car-
ried out, the host would signal to the Java processor, again via
a mailbox register, that the request had been successfully
completed (or otherwise), and that the selected channel was
available.

Similarly, the process of debugging Java application code is
as simple on a multiprocessor platform as it is on a single
processor. This can be accomplished using standard protocols,
such as the KVM Debug Wire Protocol (KDWP) to interface the
Java processor directly to a development and debug environ-
ment such as Forte. In this instance, a JTAG port would be used
to enable arbitrary locations in memory to be written to (i.e.,
to send command packets) or read from (i.e., to receive reply
packets). Alternatively, debug can be accomplished via the
host processor, using mailbox registers to enable communica-
tion between the two processors, as described earlier.

Summary
This article discussed issues that pertain to the selection of

a Java solution for devices with a significant investment in her-
itage code. Moreover, following a clear migration path from
virtual machines to embedded hardware solutions, the article
also discussed the practical implementation of a dedicated
hardware coprocessor solution. It’s probable that all the solu-
tions described, from the easiest to integrate to those offering
the ultimate performance, will be deployed in multilingual,
multiprocessor systems long before single-language devices
are upon us.

AUTHOR BIO
Dr. Carl Barratt works in the applications department of Vulcan Machines Ltd. He has over
eight years of experience in various hardware and software design roles. Carl holds a degree
in electronic engineering and a doctorate from the University of Nottingham, UK.

74 JULY 2002

FIGURE 2 Coprocessor deployment

FIGURE 1 Instruction execution model for a native Java processor

H
om

e
J2

E
E

J2
SE

J2
M

E

carl@vulcanmachines.com

Fiorano
Software

www.fiorano.com/tifosi/freedownload.htm

77JULY 2002

Java COM

?

Java COM

76 JULY 2002

To fully appreciate the power behind
Workshop, you need to know a bit
about Java Web Services (JWS), an

up-and-coming standard in the J2EE world.
Just as you can embed Java code in a JSP file
and have it compile on the application
server, Java code in a JWS file is compiled
automatically into a Web service.

JWS allows you to take standard
method calls in a Java class and, by adding
one or more Javadoc-based annotations,
instruct the Web application server to
expose the method as a SOAP-based Web
service. Workshop allows you to map an
XML element in the SOAP message to a
specific method parameter. This allows
the service to maintain its public con-
tract (the underlying SOAP interface)
while changing the implementation.

Features
The Design View, an integrated

development environment, contains a
visual representation of a Web service
and a runtime environment where you
can code, compile, deploy, and test a Web
service under development. The beta
version I used came bundled with a pre-
release version of WebLogic Application
Server 7.0 and WebLogic Builder.

Design View
The Design View is made up of several

window panes showing various aspects of
the Web service under development (see

Figure 1). The left side contains both a project
and a structure pane, the right a property

panel where you can modify the characteris-
tics of the Web service. A visual representation

of the service is provided in the center pane.
When you click the source view tab, it switches
to an editor containing Java source code.

Building a Web Service
Workshop provides developers with the

ability to create and deploy Web services just
by creating and configuring objects in a
“painter”-like interface. Within the Design
View, you can set up one or more public inter-
faces for the Web service and attach the con-
trol interfaces of the EJB components, data-
base objects, etc., to the service. The underly-
ing Java code that you write for the service
integrates the various control interfaces into a
functioning Web service.

Building and deploying your Web service is
extremely easy and seamless. Initiate the
build, and you’re only a few seconds away
from testing the interface in the test harness.
If all goes well compiling the JWS file, the
process of building and deploying (no syntax
errors) works each and every time.

Test Harness
Workshop’s browser-based test harness

facility contains everything you need to verify
and diagnose your Web service. The overview
tab in the harness contains various links to the
WSDL for the service, client source code, a
description of the service, and some other use-
ful links. The console tab takes you to the
WebLogic console, where you can monitor the
various components that make up your ser-
vice. The Test form and Test XML tabs provide
you with the ability to run the Web service and
monitor the request and response messages.
The harness automatically comes up when
you build your Web service, and is essentially
testing a fully deployed Web service.

First Impressions
The GUI design is clean and visually

appealing; the service controls and adapters
are well laid out and easy to read. The com-
plete development cycle is quick and seam-
less; you can easily run through a complete
test cycle in under a minute.

One particular aspect of the Design View I
found unique is the instant code checking fea-
ture. If there’s a problem in your code, it’ll
immediately be underlined with a wavy red
line. Move the mouse focus on top of the error
condition and a description appears. The auto-
fill feature in the editor worked equally well,
and listed the various methods available on a
particular instantiation of a class.

Web Service Debugging
The IDE provides several of the standard

debugging features you would expect in a Java
development tool. I ran one of the Web ser-
vice examples in debug mode and set a break-
point or two. It worked as you would expect it
to when invoking the service through the test
harness. This is definitely an added bonus.

Limitations
BEA WebLogic Workshop is not a Java IDE

in the traditional sense. It simplifies J2EE
development for developers who don’t know
J2EE APIs. While you don’t build EJBs directly
in WebLogic Workshop, the runtime creates
EJBs to implement the Web service. Also,
although the builder can easily set up a JMS
queue for an operation, Workshop does not
assist in setting up JMS publish and subscribe
message interfaces. You’ll need to set them up
manually or use a utility that comes with the
messaging server. Also, the product does not
contain an embedded workflow engine, so all
workflow activity needs to be managed within
the Java code.

Conclusion
Workshop has the potential to be a powerful

tool in the development and deployment of large
and complex Web services, where you can literal-
ly see how it all fits together and works. Combined
with the latest version of BEA WebLogic Server, it
becomes a very impressive platform.

BEA Systems, Inc.
2315 North First Street
San Jose, CA 95131
Phone: 800 817-4232
Web: www.bea.com
E-mail: sales@bea.com

Testing Environment
OS: Windows-XP
Hardware: Dell Inspiron 8000

info

REVIEWED BY JOSEPH A. MITCHKO jmitchko@rcn.com

BEA
WebLogic
Workshop

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by BEA Systems, Inc.

FIGURE 1 WebLogic Workshop visual development environment

Rational User
Conference

www.rational.com/ruc

Exclusive: Excerpts from JavaDevelopersJournal.com

THE INTERNATIONAL JAVA COMMUNITY AGAIN ASKS THE MULTIBILLION

DOLLAR QUESTION: ‘IS IT TIME SUN RELINQUISHED CONTROL OF JAVA?’

E
xc

lu
si

ve

J2
SE

H
om

e
J2

E
E

J2
M

E

WHEN MAINSTREAM NEWSPAPERS far from Silicon Valley,
such as The New York Times, start referring to you as “troubled,”
even a giant like Sun Microsystems has to pause and take stock.

While on the subject of stock, Sun’s has now dropped 90%
from a split-adjusted high just 20 months ago of $64.32 (on
9/1/00)…so what’s going on in Santa Clara, and what effect
might it have on Java?

This latter question is one that Java Developer’s Journal edi-
tor-in-chief Alan Williamson was asked on behalf of the world-
wide Java community.

“I absolutely do not wish Sun to go down,” Williamson
told JDJ News Desk, as he left the UK for a developer confer-
ence in Toronto, “but I do want them to get out of the court-
room and back into the boardroom. Like many other Java
developers, I want Sun to start talking strategy as opposed to
lawsuits.”

“Scott McNealy,” Williamson said, “has taken his eye off the
ball and for some reason is dabbling in the world of law far more
than he should. If he were to channel the energy he is putting
into court battles and lawsuits with Microsoft into making Sun
back into the mighty corporate giant it once was, then I think
Javaland wouldn’t even be discussing – as it is at present – the
possibility that IBM, for example, might somehow try and buy
Java from Sun.”

IBM Favors Open Sourcing
Or buy Sun from Sun. This last suggestion was one that JDJ

News Desk put to IBM’s director of e-business standards strate-
gy, Robert S. Sutor, in an exclusive interview.

“Well, that’s pretty hypothetical,” Sutor replied, laughing,
adding: “I’m certainly not someone they would ask. I have no
idea. I deal with standards; I’m not anywhere near that.”

Of course, IBM wouldn’t necessarily have to own Sun
Microsystems to have greater influence over Java. The same
would apply if Java were open sourced. On this point, Bob Sutor
was much more forthcoming.

“IBM is very much in favor of open sourcing these types of
technologies,” Sutor explains. “It’s the basis of Linux; it’s the
basis of the Apache Web Server, for example. We think it’s a
model that works. I moderated a panel with my old colleague
Simon Phipps [Sun’s chief technology evangelist] well over a
year ago, where he basically said something along the lines that
Sun was moving toward open sourcing Java.”

What did Phipps, in turn, say? As reported in an exclusive
interview with Web Services Journal News Desk (www.sys-
con.com/webservices/article.cfm?id=230), he said, “The major-
ity of players in the marketplace are using Java today,” and
added: “The Java platform is a technology platform that is used
throughout the computing industry, with 500 members of the
Java Community Process helping to standardize that Java plat-
form.”

Hardly, in other words, a platform in “trouble.” Unless you
think of Microsoft Corp’s .NET strategy, which is meant to
undermine Sun’s dominance of the enterprise-computing
space by tempting developers into using C#, not Java, in order
to more easily jump aboard the “XML-Web services” bandwag-
on.

‘The Java Platform Has Everything You Need…’
Phipps doesn’t see such a jump as being at all necessary. “And

as of today,” he maintained firmly, “the Java platform has every-
thing you need to manipulate XML and to process Web services.
That’s why in the Giga survey at the beginning of this year 75%
of developers said they would choose J2EE as their platform for
Web services.”

IBM’s Sutor, who is used to sparring with Phipps,
nonetheless reminded JDJ News Desk that the open-source
model is “a model that gets a tremendous amount of input
from the community and produces high-quality code.” In
other words, Sun might want to seriously consider relin-
quishing control of Java.

“Sun owns Java,” Sutor underlined, “they can decide if they
want to bring it to an open-standards group or if they want to
open source it. [But] open source is a model that works, and I
think it would work for Java as well.”

Alan Williamson wondered to what extent Sun’s current
predicament, with its COO Ed Zander leaving on July 1 and sev-
eral other executive departures all coming at the same time,
stems from an ambivalence at the very heart of Sun
Microsystems…as to whether Sun is in reality a hardware com-
pany or a software company, or both.

“To be honest, it doesn’t come as any great surprise that Sun
is in trouble,” Williamson said, “de facto Sun is a hardware/soft-
ware company. But some of the diehard engineers would maybe
argue that Sun is a hardware company at heart and their sally
into the world of software has been mismanaged. I guess histo-
ry will judge this.”

What does Williamson think is triggering Sun’s problems?
“Well, it would be easy to point the finger at Microsoft,” replied
Williamson. “Right or wrong, that’s the simplest thing to do, and
certainly doing so will get the most passionate response from
the Java development community. However, strictly speaking, is
that the case?

“Well, in a way it is,” he continued, referring again to what he
sees as the drain of focus and resources that goes with Sun’s
excursions into the judicial system with MS as its target. “Let’s
look at the amount of money Sun has spent on lawyers over the
last few years,” Williamson noted, adding: “I suspect it would
keep a lot of Sun marketing folks and Java developers in work for
a long time.”

The Ultimate Outcome
What if the worst happened? Williamson has no way of sec-

ond-guessing IBM, which may or may not have designs on the
Santa Clara company or its wonder language/platform. But on
one point he is clear: “I do not wish Sun to go down.”

But what if? Williamson remains defiant that Java is now big-
ger than Sun and would continue its success story. “If such a
thing were to happen, I don’t think Java will suffer. There are
plenty of people in the wings who can more than cope with tak-
ing the Java mantle.”

What about you? Do you think Java would be safe in any
other hands than Sun’s? Is Bob Sutor right that Java should now
be open sourced? Is Alan Williamson right that Java will survive
and thrive, come what may?

To respond to this article, go to www.sys-con.com/java/arti-
cle.cfm?id=1443.

by JDJ News Desk

79JULY 2002

Java COMJava COM

78 JULY 2002

Pramati
Technologies

www.pramati.com

81JULY 2002

Java COMJava COM

80 JULY 2002

L E T T E R S T O T H E E D I T O R

Java COM

Thank You Alan!

I’d like to thank Alan Williamson for
remembering our issues and concerns

at JavaOne. I just read the April issue
(Vol. 7, issue 4) and
saw that my ques-
tions were posed to
the JDK 1.4 product
manager. One thing:
scary response
regarding the dou-
ble and float per-
formance question,
something to the
effect, “we don’t
specifically isolate a
test for this.” You
would think numer-
ical calc perform-

ance would be reviewed upon each new
release.

prosys@bellatlantic.net

Alan Should Stop Being a Pessimist!

Get on with it, Alan! In March (Vol. 7,
issue 3) .NET could kill Java. In May

(Vol. 7, issue 5) J2ME may die. I’m get-
ting sick of all this nonsense from the
editor-in-chief.

Frankie
toboy@bigfoot.com

Frankie, my editorials are written
from a positive not a pessimistic angle.

I sing the praises of Java at every
opportunity, but I’m not afraid to learn
some of its weaknesses. Java isn’t the
answer to everything, and if as a commu-
nity we can learn to accept this, surely
this will allow us to devote our energies
to pushing Java into the areas in which it

can really rock – where it can
make a huge difference.

Java is a beautiful language
and will be around for a long
time. I want to make sure that we
build and sing its strengths and
accept its weaknesses.

We have a duty to care for our
language; to that end, I hear Java
success stories all the time and this
brings a lot of pleasure to me. But
in JDJ we don’t want to focus
always on the good stuff, we have
to shed some light on some of the
things that maybe aren’t so great.

If Java is to survive and not
become just another legacy lan-
guage, we mustn’t let our confi-
dence be our down-
fall.

We have to learn
from SmallTalk and
C++ and not add
Java to that list.

Alan Williamson
alan@sys-con.com

Incorrect Impression

In Scot Silverman’s
review of

RequisitePro (Vol. 7,
issue 4) the conclu-
sion gives the impression that a third-
party database engine is mandatory. This
is incorrect; RequisitePro installs out of
the box with MS Access DB drivers so it
doesn’t even require MS Access software
to be installed (not mentioned on the
Rational site, www.rational.com/prod-
ucts/reqpro/prodinfo.jsp#more).

Tom Servaes
dsdmtom@netscape.com

A Means to an End

Dan Pilone wrote a very good article
(“Pervasive Computing,” Vol. 7,

issue 4), but he said
one thing that I’d like
to contradict. “Now
the question is: How
can a developer lever-
age the available tools
to make an applica-
tion that’s useful for
the consumer?”

The question
should be (always):
“What kind of appli-
cation does the con-
sumer want?” Tech-
nology and tools don’t

matter except as a means to an
end: satisfying real require-
ments. A lot of very good
developers found that out to
their dismay during the
Internet bubble.

Phillip Gordon
pgordon@haas.berkeley.edu

CLR vs JVM

CLR, Microsoft’s virtual machine, has
to be lightweight [“There May Be

Trouble Ahead” (Vol. 7, issue 4)]. The
JVM has gone through and continues to
go through many changes; the one lan-
guage it supports is Java. Now imagine
the CLR supporting multiple languages.
How laughable to think that it can be all
things to all languages.

Mark Allred
mark.allred@concert.com

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

TogetherSoft
Corporation

www.togethersoft.com/challenge/1

Java COM

82 JULY 2002

4 Macromedia Releases JRun 4
(San Francisco) – Macromedia, Inc., has
announced the immediate availability of
JRun 4, the latest release of its Java
application server. The new version
includes the latest standards compatibil-
ity, simplified deployment, innovative
clustering technology, and Web services
integration. Download from
www.macromedia.com/store/.

4 Borland Expands Development
Solution for Java
(Scotts Valley, CA) – Borland Software
Corporation has announced its expand-
ed development solution for Java with
the introduction of JBuilder 7, Borland
Enterprise Studio 4 for Java, and
Optimizeit Suite 4.2.

Borland’s new products support the
latest standards for Java, Web services,
and wireless development.
www.borland.com

4 Sitraka JProbe 4.0 Now Shipping
(Toronto) – Sitraka is shipping version 4
of its comprehensive performance tun-
ing toolkit with new investigative fea-
tures such as heap snapshot differenc-
ing, new application server and IDE
integration tools, and enhanced plat-
form and environment support.
www.sitraka.com

4 Compuware Releases OptimalJ 2.1
(Farmington Hills, MI) – Compuware
Corporation has announced the com-
mercial availability of OptimalJ 2.1, a
Java development environment that’s at
the forefront of pattern editing function-
ality.

OptimalJ 2.1 includes three new dia-
grams at the application model level –
the DBMS Relational, the EJB
Component, and the Web Component.

These diagrams help devel-
opers understand the
application generated by
OptimalJ, enabling them
to quickly navigate
through its components.
www.compuware.com

4 PointBase Server 4.3 and
Embedded 4.3 Available
with JDBC 3.0 Compliancy
(Mountain View, CA) –
PointBase, Inc., has
announced the availabili-
ty of PointBase Server 4.3
and PointBase Embedded
4.3. New features include
JDBC 3.0 compliancy,
greater transactional per-
formance, enriched func-
tionality, improved database
console, and enhanced documenta-
tion.
www.pointbase.com

4 New Release of CocoBase from
THOUGHT Inc.
(San Francisco) – THOUGHT Inc. has
announced the release of CocoBase
Enterprise O/R, version 4.0, service
release 2.0.

This release includes new distributed
caching features with examples, a new
shared source transparent persistence
facade interface with open APIs, updat-
ed inheritance and cartesian manage-
ment, and updates to the Sun ONE
Development Environment (Forte for
Java) integration including new user
documentation.

For a free 30-day copy of CocoBase
Enterprise O/R go to
www.thoughtinc.com/cber_info.html.

4 eNGENUITY Technologies Announces
JLOOXTelecom 2.0
(Montreal) – eNGENUITY Technologies
Inc. has announced the release of
JLOOXTelecom 2.0, a ready-to-use devel-
opment framework for creating distrib-
uted Java-based network/element man-
agement systems and network planning
applications.

Among the new features is support of
several new protocols for client/server
communication. JLOOXTelecom 2.0 also
uses Lightweight Directory Access
Protocol (LDAP) to facilitate user
authentication and control access to
specialized server- and client-side busi-
ness logic.
www.engenuitytech.com

4 The Middleware Company Announces
J2EE Patterns Training
(Austin, TX) – The Middleware Company’s
new J2EE Patterns training course is avail-
able to developers worldwide.

J2EE Patterns is a one-week training
course for hard-core J2EE developers
who already have experience with J2EE
technologies and want to take their
knowledge to the next level. Students
will learn best practices, design patterns,
antipatterns, and idioms. The course is
vendor-neutral, and the concepts
learned can be applied to any J2EE pro-
gramming environment with any mod-
ern J2EE application server.
www.middleware-company.com

4 Parasoft Signs Global Software
Agreement with IBM
(Monrovia, CA) – Parasoft has announced
an agreement with IBM to provide Java
application development testing, support,
and service for IBM software products.
Under the terms of the licensing agree-
ment, Parasoft will provide global use of
its Jtest product as well as in-person and
Web-based training for IBM developers,
including IBM Global Services (IGS).
www.parasoft.com

4 QNX Momentics Simplifies Embedded
Programming
(Ottawa,Canada) – QNX Software Systems is
shipping QNX Momentics development
suite, an integrated toolset for embedded
development, that’s available in two editions:
Professional and Standard. The Professional
Edition includes C, C++, Embedded C++, and
Java code developer tools.
www.qnx.com

ROCOCO RELEASES BLUETOOTH

SIMULATOR WITH J2ME SUPPORT

(Dublin, Ireland) – Rococo Software is shipping
Impronto Simulator 1.1, a Bluetooth application
development tool that runs Java applications in a
simulated Bluetooth environment.

Impronto Simulator 1.1 now includes J2ME and
J2SE support, security control through the
Bluetooth Control Center, and an industry-leading
JVM. It’s 100% Java and simulates a complete Java
APIs for Bluetooth Wireless Technology (JABWT)
environment without Bluetooth hardware or stacks.
www.rococosoft.com

>

N
ew

s

J2
SE

H
om

e
J2

E
E

J2
M

E

SUN UNVEILS SUN ONE
PORTAL SERVER 6

(Santa Clara, CA) – Sun Microsystems, Inc., has
announced the Sun ONE Portal Server 6, a portal
server solution that includes fully integrated, secure
identity management capabilities.

The Sun ONE Portal Server 6 (formerly iPlanet
Portal Server) also offers Web single sign-on, policy
and access control, service provisioning, and unified
user management – via the embedded Sun ONE
Identity Server – and provides all the development
tools and portlet ISV support required to quickly
and efficiently deploy employee, customer, and
business partner portals.
http://sun.com/software/products/portal_srvr/
home_portal6.html

>

JAVANEWS>

2002
NEW YORK AT WEBSERVICES EDGE 2002 ...JUNE 27
BOSTON...JULY 10
SAN FRANCISCO ...AUGUST 6
SEATTLE ...AUGUST 27
AUSTIN..SEPTEMBER 10
LOS ANGELES..SEPTEMBER 19
SAN JOSE AT WEBSERVICES EDGE 2002 ..OCTOBER 3
CHICAGO ...OCTOBER 17
ATLANTA..OCTOBER 29
MINNEAPOLIS ..NOVEMBER 7
NEW YORK ..NOVEMBER 18
SAN FRANCISCO ..DECEMBER 3

2003
CHARLOTTE ..JANUARY 7
MIAMI...JANUARY 14
DALLAS...FEBRUARY 4
BALTIMORE ...FEBRUARY 20
BOSTON ...MARCH 11
REGISTER WITH A COLLEAGUE AND SAVE 15% OFF THE LOWEST REGISTRATION FEE.

…COMING TO A CITY NEAR YOU

EAST

WEST

TO REGISTER: www.sys-con.com or Call 201 802-3069

TOPICS HAVE INCLUDED:
Developing SOAP Web Services
Architecting J2EE Web Services

Take Your
Career to the
Next Level!

Take Your
Career to the
Next Level!

REGISTRATION FOR EACH CITY CLOSES THREE BUSINESS DAYS BEFORE EACH

TUTORIAL DATE. DON’T DELAY. SEATING IS LIMITED.

NON-SUBSCRIBERS: REGISTER FOR $245 AND RECEIVE THREE FREE ONE-YEAR

SUBSCRIPTIONS TO WEB SERVICES JOURNAL, JAVA DEVELOPER’S JOURNAL, AND

XML-JOURNAL, PLUS YOUR CHOICE OF BEA WEBLOGIC DEVELOPER’S JOURNAL
OR WEBSPHERE DEVELOPER’S JOURNAL, A $345 VALUE!

Learn How to Create, Test and
Deploy Enterprise-Class
Web Services Applications

Learn How to Create, Test and
Deploy Enterprise-Class
Web Services Applications

Java COMJava COM

84 JULY 2002

‘Should I Stay or Should I Go?’

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

Switching careers midstream

AUTHOR BIOS
Bill Baloglu is a

principal at
ObjectFocus

(www. ObjectFocus
.com), a Java staffing
firm in Silicon Valley.

Bill has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and
a principal at

ObjectFocus. His prior
position was at

Renaissance
Worldwide, where he

held several senior
management positions

in the firm’s Silicon
Valley operations.

One of them was happily employed.
The other two had left the business –
one is now an aspiring rock star, the
other, a monk.

In the wake of historically massive
layoffs at technology companies, many
tech professionals have reconsidered
what they want to do with their lives.

For many people, this process of
reconsidering career goals has followed
a familiar pattern. A common scenario
for those who were laid off goes some-
thing like this:
1. Within the first few weeks comes the

disorientation and shock of losing
that daily routine and sense of
responsibility and self-esteem that
goes along with an important posi-
tion.

2. Still in fast-forward mode, your fran-
tic networking gene kicks in to “get
you back in the game” as soon as pos-
sible.

3. Everyone in your network is glad to
hear from you and sympathetic, but
they’ve been laid off too – and no one
is hiring.

4. You decide to use some of that over-
time you earned pulling all those pre-
release all-nighters and take some
time off to do a little traveling.

5. That trip to Hawaii, South America,
Europe, or Australia reminds you that
there are places in the world where
time moves slower than in the hotbed
of high tech.

6. You relax, unwind, and realize that
there may be more important things
in life than coding, debugging, and
beating the competition to market.

7. Two or three months go by. You check

back on the job market. Still nada.
And then it occurs to you: Do I really
want to go back?

“A third of the people in my network
ultimately saw their layoff as more of a
blessing than a nightmare,” says Kim
Mason, former design director at
E*TRADE. “I saw it as a chance to
change my whole paradigm.”

Mason had led multiple groups
responsible for E*TRADE’s brand identi-
ty and product positioning in the U.S.
and eight international markets.

After doing contract work and
accepting invitations to lecture and lead
short-term workshops, Mason went into
secondary schools, mentoring students
in media design.

Her recent move to Oakland,
California, coincided with Mayor Jerry
Brown’s plan to revitalize city schools
with charter conservatory schools,
including the Oakland School for the
Arts. Mason will be head of media arts
for the new school, which opens in
September.

“It’s been a 180 for me,” says Mason,
who is herself a graduate of the Duke
Ellington School of Arts in Washington,
D.C. “Education is one of those careers –
you either choose it or it chooses you.”

Many tech professionals have been
trying to make the transition from the
private to the public sector, applying
their technical and management skills
toward the goals of nonprofit organiza-
tions.

After five years as a manager at one
of Silicon Valley’s largest educational
software companies, Michael Chertok

left the corporate rat race to make a dif-
ference in the nonprofit world.

He’s now managing director of
Global Catalyst, a private foundation
that initiates and grants funding for
projects that bring technology, software,
and Web access to underserved commu-
nities, including third-world countries.

“I went from a large corporate
atmosphere to the smaller, nonprofit
environment,” says Chertok, “and it
works better for me. This is what I
always wanted. But today there’s a lot
more caution on the part of nonprofits
in hiring people with private sector
experience.”

“Nonprofits typically operate with a
consensus management style, while pri-
vate companies use a top-down man-
agement style,” says Chertok.

“A lot of the people who’ve left are
making life decisions versus career deci-
sions,” says Anthony Ha, whose titles have
included director of application develop-
ment and director of Web technology.

Currently working on a long-term
contract at Sun Microsystems, Ha sees
plenty of opportunities on the horizon
for engineers who are open to exploring
new technologies.

“Most people I know are still in the
industry, but they might be moving into
newer technologies like wireless or Web
services,” says Ha.

“If people really love technology,
they’ll find a way to stay and do what
they love, even if it’s for less money. And
they’ll always be able to find jobs doing
it.”

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

We were recently looking for a skilled Swing engineer for one of our clients.
Three people who had been referred to us looked like good candidates for the job.

FPO

What’s in the next
issue of JDJ ?
JDJ VISITS MICROSOFT

WHAT ARE
THE VIRTUES
OF .NET?

Alan Williamson reports
on his visit to Microsoft’s
headquarters

ADVERTISERINDEX
ADVERTISER URL PHONE PAGE

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is fully
responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion
includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

AccelTree www.acceltree.com 25

Actuate Corporation www.actuate.com/info/jdjad.asp 800-884-8665 69

Altova www.altova.com 49

Altoweb www.altoweb.com 27

BEA Systems www.bea.com/download 4

Borland www.borland.com/new/jb7/5068.html 800-252-5547 59

Canoo Engineering AG www.canoo.com/ulc/ 41 61 228 94 44 39

Compuware Corporation www.compuware.com/products/optimalj 19

Dice www.dice.com 53

eNGENUITY Technologies www.jloox.com 800-684-5669 55

ESRI www.esri.com/mapobjectsjava 888-332-2320 37

Fiorano Software www.fiorano.com/tifosi/freedownload.htm 75

HiT Software www.hitsw.com 408-345-4001 71

IBM www.ibm.com/websphere/winning 32-33

IBM www.ibm.com/db2/rocks 34-35

Improv Technologies www.improv-tech.com/jdj/download 29

InetSoft Corporation www.inetsoft.com/jdj 888-216-2353 73

Infragistics, Inc www.infragistics.com 800-231-8588 14-15

InstallShield Software www.installshield.com 57

INT, Inc www.int.com 713-975-7434 30

Interland www.interland.com 877-501-6055 61

Jinfonet Software www.jinfonet.com/JDJ7.htm 31

Macromedia www.macromedia.com/go/jrun4jdj 45

Metrowerks www.wireless-studio/com 9

Mongoose Technology www.portalstudio.com 87

Motorola www.motorola.com/developers/wireless 67

/n software inc. www.nsoftware.com 47

New Atlanta Communications www.newatlanta.com 42-43

Northwoods Software www.nwoods.com/go/ 800-434-9820 68

Oracle Corporation www.oracle.com/ad 800-633-1072 21

Parasoft www.parasoft.com/jdj7 888-305-0041 41

Pramati Technologies www.pramati.com 79

Precise Software www.precise.com/jdj 800-310-4777 23

QUALCOMM Inc http://brew.qualcomm.com/ZJD4 63

Rational Software www.rational.com/offer/javacd2 6

Rational User Conference www.rational.com/ruc 888-889-0074 77

SilverStream Software www.silverstream.com/coals 888-823-9700 17

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 13

Sitraka www.sitraka.com/performance/jdj 800-663-4723 88

Sonic Software www.sonicsoftware.com/jdj 2

Sprint PCS 65

Sun Microsystems www.sun.com/forte 11

TogetherSoft Corporation www.togethersoft.com/challenge/1 81

Web Services Edge World Tour www.sys-con.com 201-802-3069 83

Zero G www.zerog.com 415-512-7771 3

COMBATING THE ‘OBJECT CRISIS’

Why you should invest in object training before Java
training

THE ANATOMY AND PHYSIOLOGY OF
EJB 2.0 PRIMARY KEYS
How primary keys are mapped when using container-
managed persistence in EJB 2.0. Why are they useful?

WHY CREATE A CUSTOM LAUNCHER?
A custom launcher makes startup as simple as point
and click

PERFORMANCE TUNING IN JAVA
Simple techniques to make your code run faster

IS THE CONSUMER MARKET
READY FOR J2ME?
Will J2ME make the huge impact that Sun (and the
developer community) hopes for?

WHOLE HOUSE AUDIO IN THE PALM OF
YOUR HAND - PART 2
Getting and setting listening preferences

PLUS THE INSIDE SCOOP ON:
• Java jobs
• Reusable components
• Java design
• Polymorphic EJBs

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E

87JULY 2002

Java COMJava COM

94 JULY 2002

C U B I S T T H R E A D S

Not me, though I must admit that
time has really flown by. Every month,
Alan’s thoughtful e-mail reminder
catches me a little off guard.

I’ve already used up most of my
“brushes with greatness” stories, so I find
myself at a bit of a loss as to just what to
write about this month. For the life of
me, I can’t seem to get into “flowery ver-
biage mode” today, so please bear with
me as I try to adopt a less formal tone.
(After all, we’ve been through a lot
together this past year, dear reader, so
perhaps I should start addressing you
less as an abstract audience of strangers,
and more as the amalgamated “friend”
you’ve become.)

I’ve been very busy at work lately.
Schedules have a way of creeping up on
me, and the project I’m currently working
on is no exception. Compared to recent
projects, the nice thing about this one is
that it is absolutely thick with Java code. The
not-so-nice thing, as usual, is the looming
deadline. There’s something about the
word deadline that really twiddles my bits.

As I’ve told you before, my links to
Java began tenuously. My work has
mostly been about writing bits and
pieces of the C++ “underpinnings” of our
wonderful iSeries JVM, but lately I’ve
been studying (and writing) a lot of Java
code – good and bad – and have never
been happier. Oh sure, writing C and
C++ code is fun and all, but the relative
drudgery of worrying about structure
alignment and storage management
really makes me appreciate the beauty of
a garbage-collected language like Java.

Of course, part of me worries that
having a garbage collector makes me a
“namby-pamby” programmer. It just isn’t
hard enough to implement convoluted
program logic when you know you have a
good GC behind you, right? How can I
maintain my illusion of guru-ery if I don’t
have to malloc() and free()? Shouldn’t I
mask the occasional sign bit, grok the
double floating point format, or XOR
repeatedly and recursively? “Proper” pro-
gramming simply can’t be simplified too
much, or else it turns into some abom-
inable exercise in visual button-pushing,
doesn’t it? I mean, you can’t let just any-
body be a programmer, can you? Egad!

Yeah, right…hogwash. Program-
ming is about taming unruly slivers of
etched silicon, using whatever best
practices are available (at the current
state of the art) to get the job done.

When I started programming, one of
the first things I really sank my teeth into
was chaos and fractal visualizations. It
seemed like my (4.77MHz 8088-based)
hardware was never even close to fast
enough – especially for Mandelbrot set
renderings – so I remember taking great
pains (can you say ASM?) to implement
an M-set iterator directly in the 8087
math coprocessor chip’s fabulously
expansive 8-register onboard stack.

The interface between Turbo Pascal
3.x and ASM was as clean as could be
hoped for: the compiler pushed floating
point arguments to my little assembler
routine (creatively named “iter”) direct-
ly into the 8087 stack. All my ASM code
had to do was merrily FDUP, FMUL, and

FCMP to my heart’s nascent content. My
“improved” iterator ran in just one-third
the time taken by the high-level lan-
guage algorithm (even fully optimized),
and I was in programming Nirvana.

Of course, the real world reasserted its
cantankerous nature when the next release
of the compiler up and changed the ASM
linkage. Suddenly, parameters were no
longer getting pushed directly into the 8087
registers, so I had to rework the linkage, los-
ing a good bit of my hard-won perform-
ance improvement.

One true beauty of programming in
Java, in my not-so-humble opinion, is
that we get to think about bigger pic-
tures, without getting caught up in rel-
ative trivialities. Instead of ensuring
correct argument alignment, chasing
pointer bugs, and forgetting to delete
our temporary structures, we can
spend our time changing the world.

Okay, I’ve obviously swung my par-
adigm pendulum too far. I have a ton of
respect and admiration for the bit-
twiddlers and storage managers in the
programming world. Frankly, it is on
their vast shoulders that we stand,
boldly new-ing where no programmer
has new-ed before, and we must never
forget that. Java’s decidedly credible
beauty of form is the result of incredi-
ble intellectual effort and the culmina-
tion-du-jour of programming practice.

What’s next? “Computer, please cue
up some Blue Oyster Cult and brew me
a stout ale, will ya?” Cool.

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

This is the thirteenth installment of Cubist Threads, but iron-
ically I’m feeling pretty darned lucky to be writing it.Who would
have thought this blatantly self-aggrandizing auto-theoretica
would survive a whole year?

The Beauty of Java

Mongoose
Technology

www.portalstudio.com

Java COM

88 JULY 2002

Sitraka
www.sitraka.com/performance/jdj

